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Abstract. Information extraction (IE) systems aim to convert free
text into structured knowledge that can be more easily and effec-
tively used for a wide range of tasks, such as question answering
or explanation generation. However, as text sources and information
needs have diversified, developing domain-specific IE solutions is
becoming less practical due to the lack of training data; resulting in
a need for generalizable solutions that can perform IE over unseen
data types and information needs. Current approaches augment an
LLM with a single low-rank adapter (LoRA) via tuning over many
tasks to attain some IE generalizability, but regularly fail when tar-
geting information types not in the training data. We hypothesize that
one of the reasons for this is IE-task-insensitivity, i.e. just telling the
model what to look for in the prompt is insufficient context to guide
the model. In this paper, we propose Task-Aware MoELoRA, a novel
method that embeds an additional task signal into the IE process via
a mixture-of-experts router. Through extensive experimentation over
35 IE datasets, we show that Task-Aware MoELoRA method signif-
icantly outperforms the LoRA baselines over the majority of unseen
tasks, achieving gains of up to 8.2%.

1 Introduction
Information Extraction (IE) aims to identify and categorize struc-
tured information, such as different types of entities [52, 3],
relations [53, 63] and events [46, 28], from unstructured natural lan-
guage texts. The extraction of meaningful information from raw text
predominantly follows the annotate-then-extract paradigm. In this
approach, texts are manually or distantly labeled to train machine
learning models, which are then used to automate extraction from
new texts within the same domain. However, this approach typically
leads to the development of specialized models tailored to specific
datasets and domains, such as biomedicine [24], finance [17], or
news [60]. To develop a model capable of universally solving
different IE tasks, the Universal IE (UIE) framework [37] has been
proposed to uniformly encode various extraction structures.

More recently, Large Language Models (LLMs) have been
leveraged to facilitate more effective and uniform extraction
across multiple tasks and domains, thereby promoting knowledge
sharing and cross-domain adaptation [45, 30]. However, model
performance generally falls short on unseen scenarios, with an
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Figure 1. Task-Aware MoELoRA for UIE
average F1 score of 55% compared to 73% achieved in supervised
settings [45]. This discrepancy may arise from the current practice
in LLM-based UIE methods, which rely on a single shared low-rank
adapter (LoRA [19]) to facilitate various downstream tasks. We
hypothesize that using a single set of parameters for all types of
input is insufficient, i.e. a single adapter is not expressive enough
to dynamically emphasize the relevant knowledge learned across
multiple datasets. We argue that adopting an architecture with
multiple adapters allows for a more flexible configuration, which
might be particularly beneficial when adapting to unseen datasets.
Mixture-of-Experts (MoE) [22, 47, 8], integrated with multiple
LoRA experts, is an architecture that capable of learning dynamic
parameter sets for different tasks by leveraging a task-motivated
gating mechanism [33, 5, 12, 36]. However, these studies perform
gating using either predefined identifiers of datasets or their derived
cluster embeddings, resulting in poor performance in low-resource
scenarios where the model lacks any prior exposure to task-specific
information. This represents an important limitation of existing
gating functions – if emphasis is placed on the wrong experts via
poor task disambiguation, then the probability of erroneous relations
being produced significantly increases.

To tackle the above challenge, we propose incorporating training
dataset-agnostic semantic information from a general-purpose en-
coder into the router to guide the gating mechanism, thereby facil-
itating improved generalization across unseen IE tasks. This method
enables better adaptability to semantically-related tasks and allows
the model to transfer learned representations during training. Fur-
thermore, by combining the task embeddings with token-level infor-



mation for routing, we introduce a task-aware routing mechanism
into the dense MoELoRA architecture, enabling the model to learn
multiple sets of parameters in a more fine-grained manner. In this
paper, our contributions are threefold:

• We propose leveraging static semantic task embeddings to facil-
itate multi-task adaptation of LLMs with a Mixture of LoRA ar-
chitecture. To the best of our knowledge, this is the first study to
apply MoELoRA to the UIE task.

• We devise a Task-Aware MoELoRA architecture to improve the
model generalization on unseen tasks, addressing the limitations
of relying on a single LoRA adapter for IE tasks.

• Our proposed model outperforms the LoRA baseline on unseen
datasets, achieving an 8.2% improvement in F1 score while main-
taining comparable parameter size, with demonstrating consistent
performance across 18 datasets.

2 Related Work
2.1 Universal Information Extraction (UIE)

The challenge of handling multiple information extraction tasks
with a single model arises from the diversity of user-specified label
schemas, which vary widely in structure, semantic granularity and
domains. The UIE framework tackles this by approaching IE tasks
as unified sequence-to-sequence problems, allowing models to
generalize across schema variations. Lu et al. [37] first introduced a
structured extraction language (SEL) representation to uniformly en-
code different IE tasks as a unified text-to-structure generation task.
However, this method requires separate fine-tuning of the pre-trained
model for each downstream task, which is not optimal for scenarios
with limited annotations and restricts cross-task generalization.
Recent studies have leveraged LLMs through instruction tuning
to facilitate simultaneous learning across multiple tasks, thereby
demonstrating promising generalization capabilities. In this configu-
ration, IE tasks are represented as instruction-based generation tasks.

The model learns to follow unified task instructions and output
examples, commonly formatted as natural language prompts [54] or
code generation examples [27]. Sainz et al. [45] proposed a code
schema-based approach that encodes various schemas as Python
classes. They further integrated descriptive guidelines as comments,
improving the ability of the LLM to follow annotation guide-
lines when generating structured information. Similarly, Li et al.
[30] incorporated an additional code pre-training phase to improve
the model’s schema understanding ability. However, previous code
schema-based UIE methods typically train a single adapter, which
constrains the LLMs ability to learn diverse patterns from a wide
range IE tasks and results in poor performance when targeting un-
seen labels. To address these limitations, we propose the Task-Aware
MoELoRA architecture, which leverages explicit task guidelines to
improve transferability from seen to unseen labels.

2.2 Mixture-of-LoRA Architecture

Low-Rank Adaptation (LoRA) [19], a Parameter-Efficient Fine-
Tuning (PEFT) [41] method, reduces computational costs by
injecting two trainable low-rank matrices into the dense layers of
LLMs while keeping the original parameters frozen. However, this
plug-in mechanism typically operates with a single set of parameters
for all tasks, thereby restricting cross-task generalization [20, 26].
Huang et al. [20] introduced LoRAHub, a framework that composes
LoRA adapters from upstream tasks to generalize to new tasks by
gradient-free optimization of weight coefficients using few-shot

# The following lines describe the task definition

@dataclass
class Road(Entity):
    """Refers to a road/avenue/street or a section of a 
road/avenue/street 
    when the tweet does not provide an exact location on that 
road."""

    span: str # Such as: "Barker Cypress", "I-10", "US 290 
WB", "SH-71", "I-45“

@dataclass
class River(Entity):
    """Refers to a river or a section of a river when the 
tweet does not imply there 
    is an intersection between the river and other places."""
    span: str # Such as: "Buffalo Bayou", "Brazos River", 
"Brays Bayou", "Cypress Creek"

# This is the text to analyze
text = "Flooding on the lower San Jacinto Riv will be severe”
# The annotation instances that take place in the text above 
are listed here
result =

[
    Road(span="San Jacinto Riv"),
]
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Figure 2. An example of NER prompt format

target examples. Similarly, Wu et al. [58] proposed to use a trainable
gating mechanism to combine pretrained LoRA adapters at each
layer. Furthermore, the integration of the MoE architecture [22, 47]
with LoRA allows the training of a single generalizable model
without additional adjustment, facilitating simultaneous multi-task
learning [61]. This architecture leverages a gating mechanism to dy-
namically assign weights to each LoRA expert based on the input to-
kens, computing the output either as a weighted average of all LoRA
adapters (dense gating), the top k experts with the highest weights
(sparse gating) or those exceeding an activation threshold (adaptive
gating) [26, 34, 51, 9, 43, 11, 39]. Recent advances also suggest that
providing additional expert activation signals can further enhance
multi-task gating. Dou et al. [5] and Liu et al. [33] proposed task
identifiers across datasets to partition expert groups or serve as gating
input. Meanwhile, Gou et al. [12] and Liu et al. [36] proposed using
cluster information derived from training set as semantic task signals
to activate different task expert. However, these methods often rely
on predefined expert groups or cluster-derived information which
operate at the group level and thus lack finer task-specific granularity.
Most recently, Liao et al. [31] introduced a trainable task encoder de-
signed to derive task embeddings from token representations and hi-
erarchically fuse token-level and task-level information. Similarly, as
such task information is typically derived from the training corpus or
learned jointly with the training annotations, it may embed training-
specific biases, thereby limiting adaptability and generalization to
unseen or underrepresented tasks. To date, no existing research has
investigated the use of multiple LoRA adapters for improving cross-
task generalization in UIE tasks – something we explore in this work.
Moreover, differently from the aforementioned MoE approaches, we
propose leveraging training dataset-agnostic static task knowledge
(encoded in the UIE instructions), combined with the token-level
information, to enhance expert weighting for unseen IE tasks.

3 Task-Aware MoELoRA for UIE
In this section, we describe the proposed approach, starting with the
applied UIE framework and followed by a detailed explanation of the
MoELoRA architecture and the task-aware gating mechanism.

3.1 UIE Framework

We adopt the schema-based UIE framework proposed by Sainz et al.
[45], and use a fine-tuned LLM to perform multiple IE tasks. To be
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Figure 3. The architecture of Task-Aware MoELoRA, compared with LoRA and MoELoRA.

able to use the same framework for different IE tasks and datasets,
we represent both inputs and outputs as Python classes. We show a
representative example in Figure 2, illustrating the main components
of the input prompt and the output for a named entity recognition
(NER) task. The prompt has two components: the schema definition
and the input text.

Schema definition: represents the IE task to be completed. Each la-
bel which can be retrieved is associated with a Python class. Class
attributes specify the particular pieces of information to be extracted
for each label. For instance, in the example NER task, every class
has a single attribute representing the text span that corresponds to
the entity. This schema definition contains comprehensive task in-
structions as comments, providing detailed descriptions of labels and
representative examples for both labels and attributes. These instruc-
tions can be encoded to effectively capture semantic task signals.
This component of the prompt allows the framework to be applied to
unseen labels/datasets/tasks. In order to apply it for unseen tasks, it
is enough to define a suitable schema.

Following the instructions in the schema definition, the framework
analyses the text, and extracts a list of instances of the pre-defined
classes, as illustrated in Figure 2.

3.2 Task-Aware MoELoRA Architecture

The objective of our proposed model is to dynamically adjust param-
eter sets for unseen tasks by leveraging similarities with previously
learned tasks. Previous UIE approaches based on LLMs [45, 30] ap-
ply a single LoRA adapter to each transformer block in the LLM
architecture as a fine-tuning method. However, we argue that using
multiple adapters (where each adapter has its own knowledge) can
provide the model with better generalization capabilities. Therefore,
as shown in Figure 3, we substitute the LoRA adapter by a mixture
of LoRA experts (MoELoRA).

For each transformer block, MoELoRA augments the pre-trained
weights of the linear layer, which we denote as W0 ∈ Rdin×dout .
Consistent with the standard LoRA tuning approach [19], during the
training phase, W0 remains frozen and does not receive any gradi-
ent upgrades, while the weights in the MoELoRA component are
updated. MoELoRA is divided in two sub-components: the experts,
and a router.

3.2.1 Experts

Instead of a single adapter, each transformer block contains M
smaller LoRA adapters – denoted as experts. Following [19], the for-
ward layer of each expert, Ei is defined as:

Ei = BiAiz (1)

where Ai ∈ Rdin×r , Bi ∈ Rr×dout are trainable matrices, and
z ∈ Rdin represents the token hidden state embeddings (i.e. the in-
put vector to the transformers linear layer). Here, the rank r is signif-
icantly smaller than min (din, dout) to substantially reduce the num-
ber of trainable parameters.

3.2.2 Router

To decide which experts have the best knowledge for a task, there
is a router responsible for assigning appropriate weights to each ex-
pert based on the input of the transformers block. We can define the
router as a function G(x, z) where x is the input prompt, and z the
token embeddings (as defined in Section 3.2.1). The router computes
a weight distribution across the experts for each input token. Hence,
the output vector of the transformers block, h ∈ Rdout is computed:

h = W0z +

M∑
i=1

G(x, z)iEi(z) (2)

Token-Only router: As a baseline router configuration for
MoELoRA, we only use the token hidden states z to weight the ex-
perts. This router uses a trainable linear layer Wg ∈ Rdin×M to
compute a weight distribution across the experts for each input to-
ken, normalized using a softmax function:

G(x, z) = Softmax(zWg) (3)

Task-Aware Router: Using only the token embeddings to choose
among experts can limit the model’s ability to identify task-level
characteristics – therefore hurting the generalization capabilities of
MoELoRA. Ideally, for effective multi-task learning in UIE, ex-
pert allocation should consider both token-level and task-specific
features. Therefore, we propose a second router configuration to
avoid this problem. As depicted in Figure 2, each prompt comprises
schema definitions with information extraction guidelines paired
with the corresponding input text to analyse—explicitly represent-
ing the overall task objective. Based on this, we define explicit task
embeddings as the encoded representations of the prompt. For com-
putational efficiency, we use a pre-trained lightweight code encoder
as our encoder, denoted as E . The embedding vtask ∈ Rdtask is then
obtained as:

vtask(x) = avg (E(xj))
j=|x|
j=1 (4)

where E(xj) ∈ Rdtask represents the embedding for the j-th to-
ken in the task instruction x. This mean pooling operation provides
a compact and informative representation of the task semantics. As
it only depends on the prompt, the encoder (and therefore, the task
embedding vtask) is shared among all the transformers blocks. To



perform task-aware routing, we concatenate the task representation
vtask(x) with the input token embeddings z. The router can be de-
fined as:

G(x, z) = Softmax([z; vtask(x)]Wg) (5)

with Wg ∈ R(din+dtask)×M . This operation allows the gating func-
tion to incorporate task-specific contextual information for dynamic
expert weighting.

4 Experimental Setup
4.1 Datasets

This study focuses on evaluating the implementation of Task-Aware
MoELoRA versus LoRA training, specifically in terms of general-
ization to unseen tasks. We also contrast the performance of UIE for
seen (appear in training) and unseen (never seen before) tasks. For a
fair comparison, we adopt the training corpus from Sainz et al. [45]
and expand the set of unseen tasks to enable a more comprehensive
analysis1. An overview of the datasets used in this study is provided
in Figure 42. Datasets marked in yellow represent the training sets,
which includes 5 different tasks: Named Entity Recognition (NER),
Relation Extraction (RE), Event Extraction (EE), Event Argument
Extraction (EAE), and Slot Filling (SF). Datasets marked in grey in-
dicate unseen datasets that are used exclusively for evaluation. This
analysis uses only a subset of the datasets where unseen tasks exist.
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Figure 4. An overview of the datasets used, with the grey color
representing the unseen datasets.

4.2 Implementation Details

Backbone Pre-trained Models: We adopted the 7B version Code
Llama [44] as our LLM backbone, as it aligns with our objective of
using code to represent both inputs and outputs. This choice also en-
sures a fair comparison, as the baseline framework, GoLLIE, is built
on the same model [45]. For the encoder, we use the CodeT5 en-
coder [55], which incorporates an identifier-aware pre-training objec-
tive. This objective enhances representation learning by leveraging
meaningful semantic identifiers in the code, where, in our prompt,
the identifier specifically refers to the assigned Label class.

1 Test splits are adopted from IEPILE[13]
2 Detailed dataset statistics are provided in the appendix. The appendix and

code are available at https://github.com/lubingzhiguo/TA-MoELoRA

Baselines: LoRA serves as our primary benchmark, as it allows us
to evaluate the direct impact of introducing a router while main-
taining consistent training settings. To ensure uniformity across all
PEFT methods, we configured the global rank and alpha to 32, with
LoRA at rank 32 serving as the baseline. Additionally, to mitigate the
parameter-level bias resulting from the router’s additional parame-
ters, we include a LoRA variant with a slightly larger rank of 36
to ensure a fair comparison. Since our method is designed for zero-
shot scenarios, we also compare its performance with several rele-
vant baselines: our base framework [45], a similar code-style UIE
model [30], and an LLM-based Universal NER model [64].

Model Configurations: In the MoELoRA method, ranks are evenly
distributed across all experts, with each expert assigned a rank of
32/M . In this study, we use M = 8 experts, each assigned a rank
r = 4, and compare three versions of the MoELoRA method. The
classic variant, Token-Only, uses the token as the gating input. Two
task-aware variants are also evaluated: Schema-Aware, where only
the schema definition is provided to the task encoder, and Task-
Aware, which uses the full inference prompt, including schema and
input text as task definition.

Training Setup: All adapters are integrated into the linear lay-
ers, including the q, k, o, v projections in attention layers and
up, down, gate layers in feed-forward network. All models were
trained for 3 epochs with an effective batch size of 32 and a learn-
ing rate of 3e-4 with a cosine scheduler. Training and inference were
conducted on two NVIDIA RTX 4090 GPUs, using a fixed global
seed of 42.

5 Results
We evaluate the impact of the proposed task-aware method on the
performance of UIE tasks. In particular, we investigate the following
research questions:
RQ1: How does the use of MoELoRA affect the effectiveness of UIE
models?
RQ2: How does performance of task-aware router compare to token-
level gating on unseen datasets?

5.1 MoELoRA Performance

We begin by examining the first component of this work: how does
the use of multiple LoRA experts with a router compare to classic
LoRA in terms of its impact on the effectiveness of the UIE model?
In particular, we are interested in assessing whether MoELoRA of-
fers more benefits for unseen tasks.

We compare LoRA to MoELoRA in two settings, using the F1
metric: first, a supervised setting, where the performance is tested on
the evaluation sets of the datasets used for training the models; then,
a zero-shot setting, where we test our method on the test set of un-
seen datasets. Results are shown in Table 1. As we want to measure
the effectiveness of the mixture of experts, we first compare the per-
formance of LoRA (first two columns) with Token-Only MoELoRA
(third column).

Overall performance: As shown in Table 1, Token-Only MoELoRA
performs slightly worse than LoRA in supervised settings, showing
a decrease in overall performance of approximately 1.5%. However,
MoELoRA often significantly outperforms or matches the perfor-
mance of LoRA across various datasets in zero-shot settings. This
improvement is consistent across all three major information extrac-
tion tasks: NER, RE, EE&EAE with an overall increase of 4.5% in F1
scores in zero-shot scenarios. This differential performance indicates



Table 1. Results overview. Best F1 value for each dataset is highlighted in
bold. † denotes significant improvements (t-test p < 0.05) with respect to
both LoRA variants and ∗ with respect to Token-Only MoELoRA. Arrows

(↑ and ↓) indicate comparisons with the best-performing LoRA variant.

PEFT Method LoRA MoELoRA
Variant rank 32 rank 36 Token-Only Schema-Aware Task-Aware
Params ~80M ~90M ~89M ~90M ~90M

Supervised Setting
ACE05NER [53] 87.7 87.5 81.9 77.6 83.1
ACE05RE [53] 58.8 57.0 56.4 48.2 54.7
ACE05EE [53] 69.2 69.0 65.7 62.8 69.3
ACE05EAE [53] 65.0 64.6 57.5 51.9 55.0
CoNLL 2003 [52] 92.6 92.6 92.4 91.9 91.7
Ontonotes 5 [42] 70.7 71.8 80.5 80.0 79.7
WNUT 2017 [4] 51.6 49.3 51.7 50.0 53.4
BC5CDR [57] 87.3 87.3 86.0 83.2 85.8
NCBIDisease [21] 86.6 86.2 84.9 83.9 84.3
DIANN [7] 80.5 80.9 78.1 77.2 77.8
RAMS [6] 47.6 48.4 45.3 44.2 43.9
TACRED [63] 57.2 56.7 56.2 54.7 56.8

Average 71.2 70.9 69.7↓1.5% 67.1↓4.1% 69.6↓1.6%

Zero-shot Setting
NER

BroadTwitter [3] 47.2 46.7 48.7† 49.2†∗ 50.2†∗

HarveyNER [2] 38.5 35.7 36.8 41.3†∗ 36.7
AI [35] 54.7 50.3 57.5† 58.8† 57†

Literature [35] 61.6 62.1 64.0 67.1†∗ 67.5†∗

Music [35] 64.1 62.6 72.4† 74.2† 72.7†

Politics [35] 61.7 55.5 62.2 66.0†∗ 58.6
Science [35] 53.0 49.1 55.3† 55.5† 52.0
FabNER [25] 25.4 22.7 24.7 24.5 25.3∗

MIT Movie [32] 60.3 61.4 63.9† 62.7†∗ 64.7†∗

MIT Restaurants [32] 41.7 41.6 47.5† 48.4† 52.6†∗

E3C [40] 57.8 56.4 61.6† 60.6† 62.7†∗

MultiNERD [50] 74.5 75.8 75.9 75.5 77.2†∗

WikiEvents [28] 81.2 80.6 77.5 74.2 75.3

Average 55.5 53.9 57.5↑2% 58.3↑2.8% 57.9↑2.4%

RE
SciERC [38] 0.2 0.8 5.4† 2.4† 13.7†∗
SemEval [18] 24.0 24.6 38.3† 37.0† 53.4†∗

CoNLL 2004 [1] 20.2 21.2 38.7† 53.3†∗ 59.0†∗

NYT11-HRL [49] 15.1 17.2 18.9 18.2† 21.6†∗

KBP37 [62] 9.5 16.1 22.6† 22.8† 25.4†∗

GIDS [23] 54.4 62.7 68.5† 77†∗ 79.7†∗

ADECorpus [15] 24 24.6 38.3† 37† 53.4†∗

Average 18.6 22.3 29.6↑7.3% 32.7↑10.4% 40.1↑17.8%

EE & EAE
WikiEventsEE [28] 46.0 46.4 44.3 46.1 41.9
CASIEEE [46] 48.8 50.7 56.5† 61.6†∗ 68†∗

PHEEEE [48] 55.7 57.2 63.3† 67.1†∗ 70.3†∗

WikiEventsEAE [28] 50.1 50.7 49.4 48.7 46.7
CASIEEAE [46] 48.5 47.3 49.2 51.3†∗ 47.7
PHEEEAE [48] 56.2 54.3 62.1† 65.5†∗ 67.1†∗

Average 50.9 51.1 54.1↑3% 56.7↑5.6% 57.0↑5.9%

Average All 44.5 44.7 49.2↑4.5% 51.0↑6.3% 52.9↑8.2%

that, while MoELoRA sacrifices some accuracy in supervised sce-
narios, it is particularly effective in adapting to new and unseen data.
Moreover, we see that this is not an artifact of the router adding more
parameters, as the equivalently-sized rank-36 LoRA variant still un-
derperforms MoELoRA.

Performance on unseen labels: To further evaluate the generaliza-
tion capabilities of MoELoRA in handling unseen data, we partition
the labels in the zero-shot datasets based on whether a particular la-
bel was present or not in the training datasets. This is motivated by
the observation [45] that some labels in the zero-shot datasets may
conceptually overlap with those in the training corpus, despite dif-
ferences in annotation guidelines and naming conventions. We re-
port the averaged F1 score for all tasks on both seen and unseen la-
bels (unexposed during training) in Table 2. Overall, the Token-Only
MoELoRA model demonstrates performance improvements across
both label sets. Importantly, the gains are more considerable for un-
seen labels, with a 5.1% increase in F1 score, where there is a 2.1%
higher than the 3% gain observed for seen labels. This demonstrates

Table 2. Averaged F1 for seen and unseen labels in the zero-shot setting
across tasks. Highest values are highlighted in bold. Arrows (↑ and ↓ )

indicate comparisons with the best-performing LoRA variant.

PEFT Method LoRA MoELoRA
Variant rank 32 rank 36 Token-Only Schema-Aware Task-Aware

Seen Labels
NER 57.6 54.9 59.8 60.1 61.3
RE 24.9 32.3 33.3 38.6 44.7
EE&EAE 37.7 38.1 38.3 37.5 37.2

Average All 45.0 45.7 48.7↑3% 50.1↑4.4% 52.4↑6.7%

Unseen Labels
NER 46.0 44.0 49.3 51.5 48.7
RE 14.2 15.6 25.5 27.2 35.8
EE&EAE 40.7 40.4 43.9 48.4 48.0

Average All 37.3 36.5 42.4↑5.1% 45.1↑7.8% 45.6↑8.3%

its potential to enhance the robustness of UIE models when applied
to diverse datasets, particularly in low-resource or zero-shot scenar-
ios where adaptability is crucial.
To answer RQ1: Replacing LoRA with MoELoRA structure can ro-
bustly improve the performance on unseen datasets, especially for
unseen labels. Nonetheless, this approach results in a marginal per-
formance reduction in supervised settings. In low-resource scenar-
ios, where annotations are unavailable, MoELoRA presents an effec-
tive strategy for enhancing out-of-domain performance by leveraging
knowledge from diverse datasets.

5.2 Task-Aware MoELoRA Performance

To investigate the generalization ability of task-aware routing, we
compare performance of task-aware routers to token gating, with a
special focus on unseen datasets.

Token-only vs. Schema-aware routing. We show in Tables 1 and
2 the comparison between the Token-Only MoELoRA (column 3)
and a model with a task-aware router that considers the schema
definition (Schema-Aware, column 4). As illustrated in Table 1, al-
though the schema-aware variant reduces supervised performance
by 2.6%, it surpasses Token-Only MoELoRA on unseen datasets,
achieving an overall improvement of 1.8%. Table 2 further shows the
effectiveness of Schema-Aware MoELoRA at extracting information
from both seen and unseen labels (achieving, respectively, 1.4% and
2.7% improvements over the Token-Only variant), showing the im-
portance of combining task instructions with token information to
weight experts.

Impact of task definition: We further investigate how the task rep-
resentation impacts generalization performance, by comparing the
Schema-Aware MoELoRA with a variant which uses the same archi-
tecture, but also provides the input text to the task encoder as addi-
tional information. We denote this variant as Task-Aware MoELoRA.
As seen in Table 1, in supervised settings, the Task-Aware Variant
outperforms the Schema-Aware variant by 2.5% and demonstrates
performance comparable to LoRA variants. Moreover, it surpasses
both the Schema-Aware and Token-Only variants in zero-shot set-
tings and consistently excels at relationship extraction. Notably, it
significantly outperforms the token-only router model in 17 out of 26
zero-shot datasets (65.4%), 5 more than the Schema-Aware variant.
For the RE task, we observe the largest improvements, with the Task-
Aware MoELoRA outperforming Schema-Aware variants by 7.4%
and LoRA by 17.8%. This is particularly noteworthy given that RE
tasks constitute the smallest portion of the training datasets, where
NER dominates (refer to Figure 4). Similarly, Task-Aware variant
achieves the highest averaged performance across both seen and un-
seen label sets, outperforming Schema-Only MoELoRA by 2.3% for



Table 3. Comparison of UIE models under zero-shot setting. Best F1
values are highlighted in bold.

UniNER KnowCoder GoLLIE Ours

AI 62.3 60.3 59.1 57
Literature 67.4 61.1 62.7 67.5
Music 69 70 67.8 72.7
Politics 64.5 72.2 57.2 58.6
Science 66.9 59.1 55.5 52
Movie 54.2 50 63 64.7
Restaurants 16 48.2 43.4 52.6
GIDS - 25.5 64.3 79.7
CASIEEE - 58.2 55.1 68

Average - 56.1 58.7 63.6↑4.9%

seen labels and 0.5% for unseen labels (and by 6.1% for seen labels,
and 8.6% for seen labels for the RE task). These observations sug-
gest that incorporating the input text along with the schema to the
gating mechanism further improves the generalization of our model
to unseen tasks (particularly, for the RE task), while maintaining per-
formance on seen datasets.

Analysis of failure cases: While the above analysis focuses on the
average performance across broad tasks, we also explore dataset-
specific behavior under in zero-shot settings. Interestingly, although
MoELoRA variants generally outperform or match LoRA variants
on most datasets, they consistently underperform on one particular
dataset: WikiEvents. This discrepancy can be attributed to the nature
of the dataset, which is constructed from Wiki-based sources [28]
that overlap with many training datasets. As a result, most la-
bels in this dataset were already seen during training, with only
approximately 5% of annotated labels in WikiEvents (174 out of
3,374, each instance may have multiple annotations) remaining un-
seen. This overlap shifts the evaluation from a zero-shot to a more
supervised-like setting, thereby aligning with the earlier observa-
tion that MoELoRA variants tend to exhibit reduced performance
in such conditions. Moreover, the observed performance gap can
be explained by the architectural design of MoELoRA, which dis-
tributes its parameter space across multiple experts. This modular
structure allows the model to encode learned evidence more evenly
across various tasks/datasets, introducing an implicit regularization
effect that helps prevent overfitting and thus further supports gener-
alization. However, this benefit can become a limitation in fully su-
pervised settings, where abundant training data from the target tasks
is available. In such cases, emphasizing information from the target
tasks during training becomes more important—an objective better
fulfilled by a unified parameter-set, as implemented in basic LoRA.

Comparison with other UIE methods: We further compare
the Task-Aware variant with other LLM-based UIE models, in-
cluding the 7B versions of UniNER [64], KnowCoder [30], and
GoLLIE [45]. This analysis aims to evaluate the effectiveness
of the proposed method against existing approaches in the field.
For this experiment we report the same zero-shot datasets as
KnowCoder [30], to provide a fair comparison. Unlike the previous
experiments this data follows a different task distribution, i.e. it
is largely composed of NER tasks (7/9). However, certain biases
remain, as the models (excluding GoLLIE) are trained on different
datasets, which is not accounted for in the evaluation setup of the
proposed method. The comparison results in zero-shot settings are
presented in Table 3. It can be seen that our model surpasses the
performance on most datasets, achieving a success rate of 57.1%
(4/7) compared to UniNER, 66.7% (6/9) compared to KnowCoder,
and 77.8% (7/9) compared to our base framework, GoLLIE, with
an average improvement of 4.9%. Notably, this is achieved despite
evaluation configurations favoring NER tasks and training from a

slightly weaker starting point, as evidenced by the performance of
reproduced LoRA compared to the reported results.

To answer RQ2: Routers that consider both task-level and token-
level information can significantly improve the token routing per-
formance on unseen datasets, especially for tasks with limited ex-
posure during training. Task-Aware MoELoRA, which considers
both schema and contextual text as task representations, outper-
forms Token-Only MoELoRA in zero-shot settings with only ap-
proximately 1M additional parameters while maintaining compara-
ble performance in supervised settings.

5.3 Ablation Study

Effect of Expert Count: To validate the impact of the number of ex-
perts on effectiveness in zero-shot datasets, we compare the results
obtained by varying the number of experts (2, 4, and 16) while main-
taining a global rank of 32. Figure 5 illustrates varying trends in the
performance metrics across the three tasks. In particular, RE tasks
show steady improvements as the number of experts increases, with
peak performance observed at 8 experts. Therefore, considering both
zero-shot performance and training time efficiency, 8 experts is the
optimal choice for a balanced performance across tasks.
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Figure 5. Zero-shot performance by number of experts

Effects of Router Design: In this work, we focus on a dense design
to leverage all experts. We further investigate another common router
design, namely the sparse gate [47], which selects the top-rated ex-
perts for computation. This mechanism improves efficiency by ac-
tivating only the most suitable experts, thereby reducing computa-
tional costs. For instance, the sparse gate for the Token-Only variant
can be formulated as follows:

G(x, z) = Softmax (Top-K(zWg, k)) (6)

where Top-K() keeps only the top k largest values. We report the re-
sults of the Top-2 gating versus dense gating comparison in Table 4.
It is evident that MoELoRA with a Top-2 router consistently under-
performs compared to the dense router on UIE tasks, with a notable
decline in performance, especially in the Task-Aware setup. This sug-
gests that the dense router allows the model to better leverage shared
knowledge in UIE tasks by using all experts.

Table 4. Performance of different router designs.

Router Supervised Avg. F1 Zero-shot Avg. F1

Token-Only Dense 69.7 49.2
Top-2 50.0 46.8

Task-Aware Dense 69.6 52.9
Top-2 43.5 35.2

Effects of Task Encoder: Another important factor influencing the
proposed method is the task encoder which generates contextual in-
struction embeddings. In this study, we primarily evaluate the perfor-
mance of CodeT5 [55] as our task encoder. To further investigate the
influence of different encoder models, we conduct an ablation study
comparing two categories:



Table 5. Performance of Task-Aware MoELoRA with different task
encoders. Bold numbers indicate F1 improvements over codet5.

Encoder Model Supervised Zero-shot Avg. F1
Avg. F1 Seen Unseen

Code

codet5 69.6 52.4 45.6
codebert 56.2 49.4 45.1
graphcodebert 68.4 52.0 47.6
codet5p-110m 70.2 50.6 44.7
jina-embeddings 68.7 51.7 49.0

Text bge 69.5 48.5 42.9
gte 57.8 46.6 43.5

• Code Encoder: CodeT5 [55], CodeBERT [10], GraphCode-
BERT [14], CodeT5+ [56], Jina Embeddings [16].

• Text Encoder: BGE [59] and GTE [29].

This choice is motivated by the fact that task instructions are
formatted in code-style while also containing comprehensive tex-
tual guidelines. Our analysis aims to provide a deeper understand-
ing of task encoder selection. For generating task embeddings, we
apply mean pooling, except in BERT-based models, where we use
the embeddings of the [CLS] token. Table 5 presents a performance
comparison of various code and text embedding models. The re-
sults demonstrate that code-based encoders generally outperform text
encoders in zero-shot settings. Models like Jina Embeddings and
GraphCodeBERT produce better results on unseen label sets, achiev-
ing F1 scores of 49.0 and 47.6, respectively. However, this enhanced
zero-shot capability comes with a trade-off, often leading to reduced
performance on seen labels and supervised tasks. This analysis in-
dicates that task embeddings produced by the encoder are essential
for generalization, with "higher-quality" representations potentially
enhancing adaptability to unseen tasks. Furthermore, using CodeT5
as the task encoder yields robust outcomes, maintaining a balance
between supervised specialization and zero-shot generalization.

5.4 Case Study

Analysis of Expert Weight Distribution: To better understand the
behavior across tasks, we further examine the routing weights as-
sociated with each task. In this context, each task corresponds to a
distinct label within a dataset, aligned with the prompt-level task sig-
nal employed in this study. For better interpretability, we collected
the expert weight distribution from NER task instances that are as-
signed a single label, ensuring clearer separation in the task space.
The expert weights from both the Self-Attention and Feed-Forward
Network (FFN) modules were concatenated across all layers for each
instance. Figure 6 shows a t-SNE projection of learned expert weight
representations corresponding to different labels. Each node is an-
notated with its label name, and nodes of the same color belong to
the same dataset. As shown, while labels from the same dataset tend
to exhibit similar weighting patterns, labels with the same meaning
(e.g., Award, Event) or those with semantically similar meanings
across datasets (e.g., Researcher and Scientist, Clinical Entity and
Disease) also tend to cluster closely in the embedding space. There-
fore, incorporating the prompt-based task embeddings as an addi-
tional signal facilitates finer-grained, label-level routing behavior.

6 Discussions
The effectiveness of our approach is influenced by three factors: (a)
the design of task instructions, (b) the design of task encoders and (c)
the backbone large language model.
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Figure 6. t-SNE visualization of expert weight distribution across labels

Task Instructions: Regarding the task instructions, we have re-
stricted our experiments to the schema definitions provided by Sainz
et al. [45] if available, or schema definitions in the same format
for the newly added zero-shot datasets. While different expressions
might have an effect on the performance of different UIE models, we
limited our research to only these task instructions to ensure a fair
comparison with the GoLLIE baseline. Future work might explore
alternative schema content and formatting.

Task Encoders: With respect to the task encoders, we have tested
seven pre-trained embedding models as input to our task-aware
router, reported earlier in Table 5. The task embedding space used
can have a large impact on generalization capability (as we might
expect), but we have only performed a shallow comparison of pop-
ular models at this point. We believe that their may be significantly
better embedding spaces than what was tested here that can better
capture the commonalities between tasks, and hence lead to better
expert weighting.

Backbone Model: We limited our experiments to a single LLM
backbone: Code Llama 7B. This model was selected to ensure a
fair comparison of our Task-Aware MoELoRA fine-tuning approach
with GoLLIE [45]. We did not experiment with more models on cost
grounds, given the large number of datasets and settings tested. If
we used a larger model, we expect that overall performance will in-
crease [45], but the pattern’s observed will remain the same. How-
ever, it may be worth investigating how models with additional rea-
soning training/distillation perform for UIE tasks.

7 Conclusions

In this paper, we have introduced a new parameter efficient fine-
tuning framework for UIE, Task-Aware MoELoRA, which com-
bines multiple LoRA adapters with a gating mechanism incorporat-
ing explicit task information to decide the importance of each ex-
pert. Through empirical evaluation, we have shown that our proposed
model outperforms the use of a single LoRA adapter and prior code-
schema-based UIE models on unseen tasks while performing com-
parably on previously seen scenarios.

Our results highlight that using multiple adapters to leverage
knowledge from publicly available datasets can lead to improved
generalization of information extraction models in low-resource sce-
narios. Especially when contextual task information is used to esti-
mate the importance of each of these adapters.



References
[1] X. Carreras and L. Màrquez. Introduction to the CoNLL-2004 Shared

Task: Semantic Role Labeling. In Proc. of CoNLL at HLT-NAACL,
2004.

[2] P. Chen, H. Xu, et al. Crossroads, Buildings and Neighborhoods: A
Dataset for Fine-grained Location Recognition. In Proc. of NAACL,
2022.

[3] L. Derczynski, K. Bontcheva, et al. Broad Twitter Corpus: A Diverse
Named Entity Recognition Resource. In Proc. of COLING, 2016.

[4] L. Derczynski, E. Nichols, et al. Results of the WNUT2017 Shared
Task on Novel and Emerging Entity Recognition. In Proc. of WNUT,
2017.

[5] S. Dou, E. Zhou, et al. LoRAMoE: Alleviating World Knowledge For-
getting in Large Language Models via MoE-Style Plugin. In Proc. of
ACL, 2024.

[6] S. Ebner, P. Xia, et al. Multi-Sentence Argument Linking. In Proc. of
ACL, 2020.

[7] H. Fabregat, J. Martínez-Romo, et al. Overview of the DIANN Task:
Disability Annotation Task. In Proc. of IberEval co-located with SE-
PLN, 2018.

[8] W. Fedus, B. Zoph, et al. Switch transformers: scaling to trillion pa-
rameter models with simple and efficient sparsity. Journal of Machine
Learning Research, 2022.

[9] W. Feng, C. Hao, et al. Mixture-of-LoRAs: An Efficient Multitask Tun-
ing Method for Large Language Models. In Proc. of (LREC-COLING),
Torino, Italia, 2024.

[10] Z. Feng, D. Guo, et al. CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages. In Findings of EMNLP, 2020.

[11] C. Gao, K. Chen, et al. MoLA: MoE LoRA with layer-wise expert
allocation. In Findings of NAACL, 2025.

[12] Y. Gou, Z. Liu, et al. Mixture of Cluster-conditional LoRA Ex-
perts for Vision-language Instruction Tuning, 2024. arXiv preprint
arXiv:2312.12379.

[13] H. Gui, L. Yuan, et al. IEPile: Unearthing Large Scale Schema-
Conditioned Information Extraction Corpus. In Proc. of ACL, 2024.

[14] D. Guo, S. Ren, et al. GraphCodeBERT: Pre-training Code Represen-
tations with Data Flow. In Proc. of ICLR, 2021.

[15] H. Gurulingappa, A. M. Rajput, et al. Development of a benchmark cor-
pus to support the automatic extraction of drug-related adverse effects
from medical case reports. Journal of Biomedical Informatics.

[16] M. Günther, J. Ong, et al. Jina Embeddings 2: 8192-Token General-
Purpose Text Embeddings for Long Documents, 2024. arXiv preprint
arXiv:2310.19923.

[17] H. Hamad, A. K. Thakur, et al. FIRE: A Dataset for Financial Relation
Extraction. In Findings of NAACL, 2024.

[18] I. Hendrickx, S. N. Kim, et al. SemEval-2010 Task 8: Multi-Way Clas-
sification of Semantic Relations between Pairs of Nominals. In Proc. of
SemEval, 2010.

[19] E. Hu, Y. Shen, et al. LoRA: Low-Rank Adaptation of Large Language
Models. In Proc. of ICLR, 2022.

[20] C. Huang, Q. Liu, et al. LoraHub: Efficient Cross-Task Generalization
via Dynamic LoRA Composition. In Proc. of COLM, 2024.
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