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Abstract. Large Language Models (LLMs) are increasingly promoted
for knowledge-intensive reasoning tasks. Effective oversight in such set-
tings requires faithful reasoning traces that show how answers are ac-
tually produced. Chain-of-Thought (CoT) prompting is often positioned
as a technique to improve both accuracy and transparency by eliciting
step-by-step explanations. However, recent studies have shown that CoT
traces, while plausible, are frequently unfaithful to how answers are de-
rived. We argue that there is a second, more subtle failure mode that
has received less attention: even logically correct CoT explanations can
conceal decisive evidence used to produce the answer, thereby misleading
the reader. To study this, we evaluate six LLMs across three question
answering (QA) datasets spanning arithmetic, factual QA, and multiple-
choice reasoning. We inject a disguised form of the gold answer as a key
fact into the prompt and analyse cases where this intervention flips an
initially incorrect answer to a correct one. We find that key-fact injec-
tion increases QA accuracy by 2.6% to 58% across models and datasets,
yet in 90-100% of such flip cases the injected fact is omitted from the
CoT explanation. Moreover, among these omissions, 36-59% of expla-
nations remain logically correct on human inspection. These correct-but-
incomplete traces are especially problematic: they appear sound while
failing to acknowledge decisive evidence, making them difficult to detect
by inspection alone. Our findings suggest that CoT explanations cannot
currently be relied upon as auditable evidence of reasoning, even when
they are correct.

1 Introduction

Recent works have explored whether large language model (LLM)-based systems
could act as substitutes for human reasoning [22]. However, the outputs of such
systems must be auditable to be used in many domains, such as law, medicine,
and finance [16]. Explanations must expose intermediate steps, not just final
answers. Human reasoning already offers such a standard. Examinations in ed-
ucation rely on this to assess general competence by inspecting relatively few
worked problems [25]. The idea is simple: so long as the steps reported were
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How many total fish are there?
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Fig. 1. Key-fact injection flips the model’s answer from incorrect to correct while
leaving the apparent reasoning trace unchanged. Although the injected information
is sufficient to explain the answer change, the chain-of-thought explanation does not
acknowledge its use, producing a correct-but-incomplete trace.

actually carried out in reaching the answer, the trace is useful for evaluating
that logic. Such causal traces allow errors to be corrected and performance to
be trusted from relatively few samples.

Chain-of-thought (CoT) prompting is often presented as an analogue for LLM
reasoning. By eliciting step-by-step explanations, CoTs have demonstrated sig-
nificant improvements in accuracy on standard reasoning benchmarks [21]. How-
ever, claims that they also improve transparency—and in particular that they
can serve as interpretability devices—are far less certain. The implied promise
is that the reasoning trace reflects the model’s internal process, providing a win-
dow into how the answer was reached and, by extension, offering insight into
the model’s behaviour beyond a single example. But prior work has shown that
CoTs are frequently unfaithful: they function as post-hoc narratives rather than
faithful reports of computation [13,19,1,4], calling into question their value.

However, we argue that there is a second, more subtle failure mode of CoT
explanations. Even when a CoT is logically correct, it may omit decisive evidence
that was used by the model to produce the answer. We refer to such traces as
correct-but-incomplete: explanations that present a coherent and valid line of
reasoning, yet fail to acknowledge key information that is sufficient to explain
the output. This failure mode is especially problematic because, unlike incoherent
or incorrect explanations, correct-but-incomplete traces are difficult to detect by
inspection and therefore can easily be mistaken for genuine reasoning. Figure 1
illustrates this failure mode in a simple arithmetic setting®: injecting a key fact
flips the model’s answer, however the reasoning trace makes no mention of use
of the key fact.

! Query in Figure 1 taken from GSMSK [7]



Correct but Incomplete CoT Explanations 3

In this paper, we demonstrate that correct-but-incomplete explanations arise
systematically across models and reasoning domains using a simple key-fact in-
jection perturbation. We show that, in many cases, models exploit the injected
information to produce the correct answer while omitting its use from the ex-
planation, and that a substantial fraction of these omissions yield explanations
that remain logically sound on human inspection. This reveals an evaluation
blind spot: correctness cannot be taken as reliable evidence that the explanation
reflects how the answer was produced.

2 Related Work

CoT improves accuracy, but faithfulness is variable. Chain-of-thought (CoT)
prompting reliably improves accuracy on reasoning benchmarks by eliciting in-
termediate steps before an answer is given [21]. However, whether these steps
faithfully reflect the underlying computation remains contested. Lanham et al. [13]
show that CoTs are sometimes faithful, but the degree varies with model and
task: in some settings models rely heavily on their generated traces, while in
others they ignore them.

Evidence of systematic unfaithfulness. Subsequent work has probed this prob-
lem more directly. Turpin et al. [19] analysed biased, incorrect outputs and found
that CoTs often omitted the causal features driving those outputs. Chen et al.
introduced a complementary probe: injecting disguised hints into the prompt [4].
While these hints reliably improved accuracy, they were almost never acknowl-
edged in explanations, showing that evidence driving the answer was ignored at
the explanation level. Other studies reinforce this post-hoc character: for exam-
ple, Arcuschin et al. [1] show that CoTs can rationalise contradictory outputs,
underscoring their role as surface-level justifications rather than causal accounts.
This is particularly concerning given the rapid uptake of CoT as an interpretabil-
ity device in the wider scientific literature [2], where unfaithful traces risk being
misread as genuine evidence of reasoning.

Attempts to improve faithfulness. Several directions aim to reduce CoT un-
faithfulness. Training interventions such as process supervision or reinforcement
learning with step-level feedback encourage models to align outputs with human-
annotated reasoning [20, 14], but traces can still diverge from the causal compu-
tation, and recent work suggests inherent limits to this approach [4]. Mechanis-
tic interpretability targets the model directly, identifying internal circuits that
drive behaviour and, using these to steer model behavoir [3,18]. These meth-
ods show promise but are at present partial and computationally expensive. A
complementary approach develops constructive, system-level traces: agentic sys-
tems decompose tasks into tool calls, search queries, or calculations, so that the
trace itself is the computation [24]. Evaluation here focuses on overall task suc-
cess (e.g., WebArena [26], Mind2Web [9], AgentBench [15]) or step-level fidelity
against gold decompositions (e.g., WorfBench [17]). While not error-free, such
traces provide a causal lower bound on faithfulness.

3 Methodology

Our aim is not to benchmark LLM accuracy, but to probe whether chain-of-
thought (CoT) traces can be trusted as evidence of reasoning. We adapt the
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answer-injection method of Chen et al. [4], inserting a disguised form of the gold
answer as a “user guess” into the prompt (referred to as the key fact).

If CoTs are constructive, this new evidence should be explicitly integrated
into the explanation; if they are post-hoc rationalisations, it will be ignored even
when it clearly drives the answer. A chain-of-thought explanation is considered
complete if it explicitly acknowledges the injected user guess. An explanation
that reaches the correct answer while omitting any reference to this causally
relevant fact is classified as incomplete. This yields two research questions:

— RQ1: Do CoT explanations acknowledge all the key facts used to produce
answers?

— RQ2: When they omit such facts, do the resulting explanations exhibit
detectable logical errors?

Datasets and Models. We randomly sampled 450 queries in total, evenly split
across ARC-Easy (multiple-choice science) [6], GSM8K (arithmetic reasoning) [7],
and BoolQ (binary factual QA) [5]. We evaluated six open-weight LLMs. Four
were instruction-tuned base models: Qwen 2.5 (7B) [23], OLMo (7B) [11], Mistral
(8B) [12], and LLaMA 3.1 (8B) [10]. In addition, we tested two reasoning-distilled
models from DeepSeek R1 [8], derived from Qwen and LLaMA backbones respec-
tively. Decoding was deterministic (temperature=0) with a zero-shot prompt.

All models were prompted to produce an explicit chain-of-thought followed
by a final answer, using a fixed instruction template shared across conditions.
Responses were required to place reasoning steps inside <cot> tags and the
final answer inside <answer> tags. The only difference between baseline and
intervention prompt being the absence or presence of the injected user guess.

From the model outputs, we sampled 30 instances per model where the base-
line answer was incorrect but flipped to correct under the intervention, yielding
180 traces for annotation (denoted flip instances).

Annotation Scheme. We manually annotated the extracted CoT explanations
(i.e., content between <cot> tags) for all flip instances into three mutually ex-
clusive categories:

1. Fact Acknowledged: the explanation explicitly attributes its reasoning to
the user-provided guess (e.g., by using the guess as a starting point for the
solution or by explicitly checking the reasoning against it).

2. Correct-but-Incomplete: the explanation omits the injected fact yet presents

a logically valid derivation that would justify the answer if taken at face
value.

3. Invalid: the explanation omits the injected fact but is incoherent, irrelevant,
or incorrect.

Annotation was performed by the first author following a two-step proto-
col. First, each explanation was assessed for explicit acknowledgment of the
injected fact. Second, for explanations that omitted the fact, logical validity
was judged independently of causal attribution: the explanation was marked as
valid if its steps were internally consistent and sufficient to derive the stated
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Model QA Accuracy ‘COT Completeness (Flip Instances)

ARC-EASY BOOLQ GSMS8K |Fact Omission| Fact Omitted but

Key Fact Injection 4 X v X v X Rate Logically Correct
Qwen 2.5 7B 0.258 0.152 0.648 0.338 0.920 0.895 100.0% 46.7%
DeepSeek-LLaMA 8B 0.800 0.695 0.588 0.335 0.515 0.288 96.7% 58.6%
OLMo 7B 0.298 0.235 0.618 0.100 0.242 0.142 100.0% 36.7%
DeepSeek-Qwen 7B 0.290 0.220 0.605 0.295 0.478 0.328 90.0% 55.6%
LLaMA 3.1 8B 0.950 0.862 0.622 0.435 0.378 0.352 93.3% 53.6%
Mistral 8B 0.735 0.478 0.750 0.170 0.738 0.580 96.7% 51.7%

Table 1. Question answering accuracy across three datasets, with/without fact injec-
tion. Fact omission rate is the proportion of explanations (from the 180 flip instances
sample) that omitted the injected fact when provided. Fact omitted but logically cor-
rect is the proportion of those explanations that were also logically correct on human
inspection, despite failing to mention the injected fact used to get to the correct answer.

answer. The goal was not exhaustive quantification but demonstration: that
correct-but-incomplete explanations exist across models and domains, and that
their prevalence on unperturbed queries cannot currently be estimated by any
reliable method.

4 Results

4.1 RQ1: Do CoT explanations acknowledge all the key facts used
to produce answers?

We first examine whether chain-of-thought explanations acknowledge causally
relevant information when it is made available in the prompt. If CoTs were
faithful, externally supplied evidence that improves answer accuracy should be
explicitly attributed in the explanation.

Table 1 reports question-answering accuracy with and without key-fact in-
jection across three datasets. As expected, providing the correct answer as a
disguised user guess increases accuracy across all models, with gains ranging
from 2.6% to 58%. Notably, accuracy does not reach ceiling performance, indi-
cating that models do not always exploit the hint.

To assess explanation behaviour, we focus on flip instances: cases where the
baseline answer is incorrect but becomes correct after key-fact injection (30 per
model, 180 total). The two rightmost columns of Table 1 summarise explanation
completeness over these flip instances. Fact Omission Rate denotes the propor-
tion of explanations that fail to attribute reasoning to the user-provided guess,
while Fact Omitted but Logically Correct reports the subset of those explanations
that nonetheless form a valid solution path on human inspection.

Across all models, omission rates exceed 90%, showing that models routinely
exploit the injected information to reach the correct answer without acknowl-
edging it in the explanation. Chain-of-thought explanations overwhelmingly fail
to attribute reasoning to causally relevant, user-provided guesses, confirming
that CoTs often function as post-hoc justifications rather than faithful reason-
ing traces.
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4.2 RQ2: Do incomplete explanations show logical errors?

Incomplete explanations are not all equally problematic. Incoherent reasoning
can be dismissed on inspection, but explanations that are logically valid yet
omit causal attribution pose a more serious challenge, as they are difficult to
distinguish from genuine reasoning.

To assess this, we analyse the same 180 flip instances, restricting attention
to explanations that omit attribution to the user-provided guess. If omission
primarily reflected incoherence, we would expect most of these explanations to
be invalid.

However, evidence suggests this is not the case. As shown in the final column
of Table 1, between 36% and 59% of unfaithful explanations remain logically
valid. These explanations present coherent solution paths while omitting the
key fact that produced the answer. Such cases are especially misleading, since
neither plausibility nor correctness is reliable evidence of reasoning. Importantly,
the perturbation allows us to establish the existence of non-causal behaviour
in controlled conditions, but it does not license claims about its prevalence in
unperturbed queries—the setting of real concern. Given the small annotated
sample and this methodological constraint, we do not claim model- or dataset-
specific rates; our aim is to demonstrate that the behaviour exists across models
and domains, and to highlight that no current method can detect its frequency
in natural queries.

5 Discussion

CoT as an interpretability device. Our findings show that correctness does not
guarantee faithfulness. Many unfaithful traces were logically valid but non-
causal, producing the illusion of genuine reasoning. This is more problematic
than plausible yet unsound explanations: if unfaithfulness were always detectable,
CoTs could still function as a diagnostic tool. Instead, CoTs can yield explana-
tions indistinguishable from causal reasoning yet disconnected from the model’s
computation. Because the prevalence of this cannot be reliably estimated on
natural queries, CoTs cannot be trusted as interpretability devices.

Constructive traces as a partial remedy. Many approaches aim to improve the
faithfulness of CoTs directly, such as process supervision, reinforcement learning
with step-level feedback, or mechanistic interpretability methods. These inter-
ventions can increase alignment between explanations and computation, but they
do not eliminate the risk of non-causal post-hoc narratives. A complementary
direction is to shift from narrated traces to constructive ones. Agentic systems,
for example, decompose tasks into explicit actions—tool calls, search queries, or
subtasks—whose execution is the reasoning process. Their traces are not per-
fect—errors and omissions remain possible—but they provide at least a lower
bound on faithfulness, since the recorded steps were in fact carried out. Such
constructive traces may therefore form a stronger foundation for evaluation in
high-stakes domains.

Human-grounded evaluation. Evaluation must be human-grounded, since the tar-
get is not merely answer accuracy but reasoning quality. The relevant baseline
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is how competent humans solve problems: decomposing, retrieving, citing, and
revising when evidence changes. Benchmarks that provide expert gold decom-
positions allow reasoning to be assessed directly, and constructive traces make
this evaluation more sample-efficient. WorFBench [17] illustrates one approach,
using graph-similarity metrics to compare model traces against gold solutions.
However, its gold traces are themselves LLM-generated, limiting the compari-
son to model-model rather than model-human. Datasets with human-authored
decompositions are therefore essential—for example, FanOutQA [27] provides
such supervision, though it is restricted to a single query type. Expanding these
resources is crucial for evaluating whether systems reason in ways comparable
to humans, not just whether they produce correct answers.

Limitations. Our analysis is limited in scope along several dimensions. It focuses
on flip cases under answer injection across three benchmarks and six models,
establishing existence rather than prevalence on natural queries. The evaluated
datasets involve relatively simple reasoning tasks and domains where models may
have encountered similar problem patterns during training (e.g., GSM8K). In
addition, we use a single, fixed prompting scheme per task rather than exploring
prompt variation.

These limitations do not undercut the central claim. The demonstrated fail-
ure mode arises under a standard setup for eliciting chain-of-thought explana-
tions and shows that even in simple settings—where reasoning correctness is
easy to assess—logically valid explanations can omit causally relevant informa-
tion while remaining indistinguishable from faithful reasoning.

As task complexity increases, evaluating reasoning quality, rather than an-
swer correctness, scales non-linearly in human effort; judgments require validat-
ing increasingly long and interdependent reasoning chains. Under such condi-
tions, the suitability of LLMs as judges of reasoning quality has not been estab-
lished. Extending this analysis to substantially harder reasoning tasks therefore
presents a challenge.

6 Conclusion

In this paper we adapted existing interventions to show that chain-of-thought
explanations can be correct but incomplete: valid reasoning paths that did not
causally produce the model’s answer. This is especially misleading, because it
risks persuading evaluators that genuine reasoning has occurred when it has
not. Its frequency on natural queries cannot currently be estimated, leaving a
persistent evaluation blind spot. For domains where auditability is required, this
limitation is critical. CoTs are structurally post-hoc and cannot serve as depend-
able evidence of reasoning: they provide an appearance of transparency without
a causal guarantee, an illusion that may be more dangerous than having no
explanation at all. We suggest that constructive architectures — such as agen-
tic systems — may offer a stronger foundation, since their traces are generated
through execution and are causal by design.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.
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