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Abstract
Financial asset recommender (FAR) systems sug-
gest investment assets to customers based on past
market information. Many of these models choose
those securities which they estimate to be more
profitable for customers. Financial knowledge
graphs (KGs)– data structures containing informa-
tion about assets and their relations to other in-
volved entities (companies, people) – have been
one of the data sources exploited to drive asset se-
lection. Although the construction of knowledge
graphs from different sources (news, reports) has
previously been investigated, there has been limited
analysis of the effect these construction strategies
have for FAR. In this work, we compare two differ-
ent knowledge graphs representing U.S. stocks un-
der a unified FAR framework: a knowledge graph
crawled from a general knowledge base, Wikidata,
and a knowledge graph built by extracting entities
and relations from 10K financial reports using the
GoLLIE open information extraction model. We
show that integrating these KGs in FAR can lead
up to 10.7% improvements in monthly ROI. How-
ever, the nature of these graphs makes algorithms
prone to bias the recommendations towards differ-
ent asset types.

1 Introduction
Financial asset recommender systems are tools to assist
investors in making informed investment decisions [Mc-
Creadie et al., 2022; Sanz-Cruzado et al., 2022]. These tech-
nologies aim to produce a ranking of financial securities (e.g.
stocks) on which a customer might invest. As one of the main
targets of these methods is to help customers increase their
wealth, the majority of the methods proposed in this field rely
on historical pricing information of assets to predict stock
price movement [Zhang et al., 2017; Nelson et al., 2017].
This core signal is then often augmented through the integra-
tion of evidence from external information sources such as
textual data from news and social media [Hu et al., 2018;
Chen, 2021; Cheng et al., 2020].

A financial knowledge graph (KG) is a data structure that
can be used to store such external information [Wang et al.,

2023; Deng et al., 2019; Cheng et al., 2020; Zhao et al.,
2023]. In such a graph, nodes represent entities (companies,
people), while edges represent relations between them (e.g.
between-company or board member relationships). Multi-
ple methods have been proposed for the creation of financial
KGs, including crawling general knowledge bases like Wiki-
data [Feng et al., 2019] or extracting facts and events from
financial reports [Kertkeidkachorn et al., 2023; Pujara, 2017]
or news [Cheng et al., 2020; Elhammadi et al., 2020].

Different KG creation techniques have advantages and dis-
advantages. On the one hand, graphs extracted from financial
documents (such as news or financial reports) include timely
information about companies and related entities, which is
specific to the financial domain. However, they are gen-
erated by applying information extraction techniques over
(typically) unstructured text documents [Bach and Badaskar,
2007], and as such are prone to hallucinating incorrect facts
[Pejić Bach et al., 2019]. On the other hand, graphs produced
from general knowledge bases like Wikidata or DBPedia have
their factoids assessed by human annotators to ensure their
correctness [Vrandečić and Krötzsch, 2014], but often incor-
porate connections that are irrelevant for the financial domain
and are updated infrequently. While both approaches have
been tested in isolation previously, no prior works have quan-
titatively compared these two different strategies. This is an
important gap, as intuitively the graphs produced by these two
strategies are likely to benefit different types of assets being
recommended, introducing a structured bias. For instance,
general knowledge bases result in larger graphs with imbal-
anced coverage toward well-known/long standing companies.
Meanwhile, news-based graphs are smaller and more focused
on companies that are newsworthy.

Hence, in this work, we tackle the above gap by analysing
the impact that these two knowledge graph construction
strategies have when predicting the future profitability of U.S.
stocks. First, we produce a financial knowledge graph con-
taining information about companies from Wikidata. Second,
we build a knowledge graph by applying automated informa-
tion extraction techniques over 10K reports using large lan-
guage models (LLMs) [Sainz et al., 2024]. As required by
the U.S. Securities and Exchange Comission, these annual re-
ports disclose detailed financial performance and announce-
ments about publicly traded companies to stock investors and
unsurprisingly trigger immediate market responses [Griffin,



2003]. Finally, we compare the utility of these knowledge
graphs under a unified profitability prediction framework in-
tegrating knowledge graph embeddings [Wang et al., 2021]
as features for the task.

Specifically, the primary contributions of this work are
three-fold:

• We construct a financial KG from 10K reports using
fine-tuned LLMs for open information extraction.

• We crawl a financial KG from Wikidata as a general
knowledge base.

• We compare the effect these knowledge graphs have
on profitability prediction over the U.S. stock market,
demonstrating that integrating these KGs can lead up to
10.7% higher in monthly ROI. We also demonstrate that
different KG construction strategies bias their results to-
wards separate sets of assets.

2 Related Work
To integrate external evidence into an asset recommendation
system using a knowledge graph as an intermediate represen-
tation, we need two technologies: 1) a graph generator, that
takes information about financial topics and extracts associ-
ated entities as well as their relations that form the graph; and
2) an entity embedder, which given an asset produces a vector
embedding that encodes information related to the asset from
the graph. We introduce past works regarding each below:

2.1 Knowledge Graph Generation
The first step in knowledge graph generation is to select the
type of content that you want to extract information from.
If producing a new knowledge graph from scratch, the most
popular data source to use is financial news articles, as in-
tuitively significant events that affect an asset will have as-
sociated news content, but conversely much irrelevant infor-
mation will also be captured [Elhammadi et al., 2020]. In-
stead, a clean data source such as financial filings can be used,
which is more targeted and in-depth, but are published infre-
quently [Pujara, 2017; Kertkeidkachorn et al., 2023]. Alter-
natively, rather than building a completely new graph, some
works have bootstrapped from an existing knowledge-base,
such as DBPedia, where a large general knowledge graph
needs to be filtered down to a useful subset for the finan-
cial domain [Vrandečić and Krötzsch, 2014]. To contain the
scope for this initial work, we compare approaches to model
what a company (that can be invested in) is and does. As
such, we use U.S. 10K financial reports as a company pro-
vided overview of their operations and compare it to company
information from WikiData.

Once we have selected our data sources, we next need
to extract the entities and relationships that will form each
graph. Depending on the type of data being used, the ap-
proach here will differ. If using an existing knowledge graph,
then a set of filtering rules needs to be defined, as well as po-
tentially entity disambiguation performed. However, for text-
based data sources, Information Extraction (IE) techniques
need to be applied to the raw text. This is usually com-
prised of two components: 1) entity identification (and link-
ing), which identifies financial entities (companies, people,

places) in the text; and 2) relationship extraction, which gen-
erates likely relationship tags between pairs of entities [Pu-
jara, 2017]1. For instance:

Entity1 ‘Nik Jhangiani’, Relationship ‘CFO’, Entity2 ‘Diageo’ (1)

Of note is that for relationship extraction, approaches can be
either closed domain (a set of target relationship types are de-
fined beforehand) or open domain (any relationship tag can
be generated) [Kaur et al., 2023]. While most works fo-
cus on closed-domain extraction, the emergence of effective
large language models has opened the door to less error-prone
open-domain extraction than was previously possible, with
models such as GoLLIE [Sainz et al., 2024]. In this work,
we use GoLLIE over our 10K filings perform open-domain
extraction, where the model is guided to look for either busi-
ness, transaction or personnel-related relationships.

2.2 Entity Embedding
Once we have a financial knowledge graph, given a financial
asset representing a company that we want to recommend, we
need to produce an embedding representing what the knowl-
edge graph has about that company. To do this, knowledge
graph embedding (KGE) models are used, which produce a
low-dimensional vector representation given a starting graph
node or edge to represent [Wang et al., 2021]. There are three
families of KGE models:

Translation-based These techniques represent entities as
points and relationships as translations in vector spaces. An
early model in this category is TransE [Bordes et al., 2013],
followed by models like TransH [Rossi et al., 2021] and
TransR [Lin et al., 2015] and RotatE [Sun et al., 2018].

Factorization-based Factorization methods estimate the
plausibility of triplets through semantic similarity, focusing
on the latent semantics between entities and relations [Rossi
et al., 2021]. These models include RESCAL [Nickel et al.,
2011], DistMult [Yang et al., 2015], TuckER [Balazevic et
al., 2019], and HolE [Nickel et al., 2016].

Neural Network-based Neural networks, with their capac-
ity to learn complex patterns through a large number of pa-
rameters, are considered as a promising approach across vari-
ous domains [Rossi et al., 2021]. Several KGE methods have
taken these algorithms as a basis, like ConvE [Dettmers et al.,
2018], RGCN and KGAT [Wang et al., 2019].

In our later experiments, we compare asset embeddings
produced by a range of algorithms across these three types
for both 10K filings and Wikidata-based knowledge graphs.

2.3 Financial Asset Recommendation
Finally, having produced a knowledge graph embedding for a
company/asset, we can then use that embedding to augment a
downstream task. In this work, we target Financial Asset Rec-
ommendation as that task, where given a day, we want to rank
assets on that day such that the future return-on-investment
of the top ranked assets is maximised [Feng et al., 2019;

1Relationships may also have extracted properties/qualifiers,
such as an indicated date for when the relationship was formed.



Alzaman, 2024; Alsulmi, 2022]. For this, we rely on regres-
sion models like the ones used by [Sanz-Cruzado et al., 2022;
Rather et al., 2015]

Similarly to our work, several models have integrated
pricing and knowledge graph information for stock predic-
tions [Feng et al., 2019; Zhang et al., 2018]. These models
either exploit similarities between assets [Zhang et al., 2018;
Long et al., 2020; Wang et al., 2023] or integrate KGs
as features [Deng et al., 2019; Cheng et al., 2020;
Zhao et al., 2023]. We explore the second way. How-
ever, previous feature-based approaches need specific KG
structures or data sources to build those KGs. Differently,
we propose a simple framework which integrates knowledge
graph embeddings as features. This allows the use of any
financial KG as input to our models – something that we
can use to compare the effect that different knowledge graph
structures have on the recommendations.

3 Knowledge Graph Construction
In this work, we construct two financial knowledge graphs
from two different sources to compare the performance for
financial asset recommendation / stock recommendation.

3.1 Graph Definition
Our constructed knowledge graphs contain a set of hyper-
relational facts f = (eh, r, et, q, qv), following the defini-
tion provided by Chia et al. [2022]. Each fact consists of a
head entity eh, a relation r , a tail entity et, as well as an
optional qualifier label q and its respective value qv . For in-
stance, specific organizations and people represent entities,
relations detail connections between those entities (i.e. own-
ership or employment) and qualifiers represent additional val-
ues associated to a link (for example, the date on which the
link occurs).

3.2 Wikidata graph
Firstly, we extract a financial knowledge graph from a general
knowledge base, Wikidata [Vrandečić and Krötzsch, 2014].
Wikidata includes information about entities in the financial
domain that we can integrate into a graph. However, as Wiki-
data contains a broad range of information beyond the finan-
cial domain, we need to filter and retrieve the relevant data for
our knowledge graph, following the procedure we detail next.

Seed Entity Matching As a first step, we need to identify
some seed entities in Wikidata. For this, we take the stocks
trading in NASDAQ, NYSE and AMEX at December 2021
as our seed entities, since we aim to predict the future pricing
of these stocks. We employ a semi-automated three-step pro-
cess to match those companies with entities in the Wikidata
knowledge base:

First, we use the SPARQL Wikidata Query Service2 to fil-
ter and retrieve entities related to the stock exchanges of in-
terest (NASDAQ, NYSE, AMEX) and gather their identifiers,
names, and aliases in multiple languages. If a direct match
between the company tickers and Wikidata entries is found,
we link them automatically. Second, for assets without direct

2https://query.wikidata.org/

Element Valid types

Entity Organization, Person, Location, Market, Prod-
uct, Material, Activity, Award, Legal form,
Form of government, Gender, Health problem

Relation Ownership, Employment, Part of, Creation,
Award, Location, Material, Skills, Condition,
Sequence

Qualifier Time, Position, Location, Item or service,
Amount

Table 1: Entity, relation and qualifier types in the Wikidata graph.

matches, we use DBpedia Spotlight [Mendes et al., 2011] for
entity recognition and linking to entries in DBPedia (another
public knowledge base), which are then cross-referenced to
Wikidata identifiers. We verify the results manually to ensure
accuracy. Finally, for any unmatched entities, we conduct a
manual search in Wikidata. If a company does not match any
entity, it is excluded from our dataset, assuming no associ-
ation with Wikidata exists. We started with a total of 5,823
assets from NASDAQ, NYSE and AMEX. Via entity match-
ing we mapped 3,370 of these (57.9%) to Wikidata pages.

Entity and Relation Extraction Starting with mapped
Wikidata entries, we extract metadata, relations, and prop-
erties for each entry, including any available temporal in-
formation for the relations. Our crawling method follows a
breadth-first search algorithm, beginning with seed entities
and expanding outward in a first-found, first-served manner.
To avoid crawling information outside the financial domain,
we cap the search depth from the seed entities. Furthermore,
we have specified a list of valid financial relations and entity
types to guide our crawler. The broad types of those entities
and relations are summarized in Table 1.

3.3 10K reports graph
Second, we create a graph from financial texts using auto-
mated relation extraction. In this work, we construct our auto-
mated knowledge graph using some of the most comprehen-
sive and official financial reports: the 10K annual filings. We
next provide details of our information extraction procedure.

Pre-processing Considering that financial reports are
lengthy and exceed the context window of the LLM we use,
we initially perform sentence segmentation on each report,
converting it into a list of sentences using Stanford NLP [Qi
et al., 2020]. This enables us to generate hyper-relational
facts. Furthermore, as in most reports, terms such as ’we’,
’the company’ and ’the corporate’ refer to the reported com-
pany, as such we resolve/replace these with their correspond-
ing company names.

Entity and Relation Extraction Our information extrac-
tion pipeline is based on GoLLIE [Sainz et al., 2024]. GoL-
LIE is a recent LLM-based model for zero-shot information
extraction (IE). This model has been successfully applied to
multiple IE tasks across multiple domains, so we use it in our
work to extract financial entities and relations from the 10K
filings. This model is based on Code-LLaMA [Roziere et
al., 2023] and represents both input and output using Python



Entity Valid Type

Head Entity & Tail Entity Organization, Person
Qualifier Label Time, Position, Location, Item or service,

Amount

Table 2: Entity types in the 10K graph.

classes. It receives two inputs: first, a text from which to ex-
tract information, a second, a list of Python class definitions
describing the information to extract. For each label, there is
a Python class detailing its structure (where class attributes
represent specific information pieces to extract). Extraction
guidelines are embedded as comments in the Python class to
assist the model. The output of the model is a list of instances
of the pre-defined Python classes, each containing a pair of
entities, a relation and any relevant properties.

In our information extraction procedure, we perform event
argument extraction to produce hyper-relational facts using
event templates provided for GoLLIE3. We define three types
of events to extract:

• Business event: actions related to organisations. For in-
stance, creating, acquiring or ending other organisations
as well as declaring bankruptcy.

• Transaction event: this event type refers to exchanges
between organisations, either of artefacts, people or
money.

• Personnel event: interactions between people and or-
ganisations. For instance, foundation of a company, or
election of a person for a position.

All of these events are represent by a hyper-relational fact,
where we define the types of the entities, and allow the model
to extract the relation types. We broadly classify the quali-
fiers into five groups: ‘time’, ‘position’, ‘location’, ‘item or
service’ and ‘amount’.

Figure 1 shows an example of the input and output of the
model. In the predefined ’BussinessEvent’ data class, we
first provide a text describing the types of events we want to
extract as a comment. In order to capture the business facts
related to organizations, we define the head entity as ’subject
organization’, and tail entity as ’object organization’, adding
location and time as qualifiers. As it is common that the
extracted facts may not always include all the components we
thus define Optional typings to handle diverse matching pat-
terns. This example demonstrates an extracted ’BusinessEv-
ent’ instance from the input text, with ’Microsoft’ as the head
entity and ’Nokia Corporation’ as the tail entity. The relation-
ship between them is described by the term ’acquired’, with
’April 25, 2014’ serving as the only time-related qualifier.
Relation Clustering The identified relational phrases are
continuous text spans directly extracted from the sentence,
which tend to be noisy. Therefore, additional steps are needed
to match different relation types. Inspired by Hu et al. [2020],
we use clustering to group similar relational facts in an unsu-
pervised manner.

3https://github.com/hitz-zentroa/GoLLIE/blob/main/notebooks/
Event%20Extraction.ipynb

On April 25, 2014, Microsoft acquired substantially all of Nokia 

Corporation’s Devices and Services business (“NDS”).

@dataclass

class BusinessEvent (Event):

"""A BusinessEvent refers to actions related to Organizations 

such as: creating, merging, acquiring, owning another 

organization, declaring bankruptcy or ending organizations 

(including government agencies)."""

mention: str

""" The text span that most clearly expresses the event. Such 

as: "started", "open", "create", "closing", "merged"

"""

subject_organization: str # Initiator or primary organization in 

the event

object_organization: str # Receiver or secondary organization 

in the event.

location: Optional[str] = None # Where the event takes place

point_in_time: Optional[str] = None # Descriptive or vague 

moment of the event, not intended for direct comparison with 

start_time or end_time

start_time: Optional[datetime] = None # The precise starting 

datetime of the event

end_time: Optional[datetime] = None # The precise ending 

datetime of the event

Event definition

E
v
en

t d
escrip

tio
n

 

an
n

o
tatio

n
E

v
en

t attrib
u

tes

Input text

Output facts

[

BusinessEvent (

mention = "acquired",

subject_organization = "Microsoft",

object_organization = "Nokia Corporation",

point_in_time = "April 25, 2014"

)

]

IN
P

U
T

O
U

T
P

U
T

Figure 1: An example of extracted hyper-relational facts

We first perform lemmatization on the extracted rela-
tions to reduce variations in their word representation. To
perform the clustering, we represent the relation mentions
as vectors using the Sentence-BERT pretrained language
model [Reimers and Gurevych, 2019]. This enables us to es-
tablish distances between relation phrases, which we can use
to perform the clustering. Then, we use agglomerative clus-
tering [Murtagh and Legendre, 2014] to group the vectors and
combine similar relations – thus shrinking the number of dif-
ferent relations in our knowledge graph. We use this simple
and hierarchical algorithm as it allows us to establish a dis-
tance threshold for grouping instead of a number of clusters –
something that aligns well with our open information extrac-
tion task. In our configuration, we consider that two vectors
with distance (within-cluster variance) smaller than 1 belong
to the same cluster. Finally, to further refine our dataset with
higher qualified relations, we exclude relations that occurred
with a frequency below the 75th percentile threshold for the
entire collection (6 times in our data).

Entity Linking Similar to extracted relations, the entities
extracted from texts are text spans that need to be unified
and linked to real-world entities. Given the difficulty in ac-
curately mapping individual names, we only focus on organ-
isations. We apply two methods. First, we use a zero-shot
entity linking method based on BERT known as BLINK [Wu
et al., 2020]: this approach matches spans of text to enti-
ties in Wikipedia. Second, we use the company name nor-
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Figure 2: Profitability Prediction Architecture

malisation functionality of the John Snow Labs NLP library4

This feature maps extracted company names to the name reg-
istered with the SEC in the Edgar Database, which is useful
when handling 10K filings and aims to enhance the accuracy
of linking organisational entities.

Both methods provide, as outputs, an entity name and
a confidence score. To ensure reliability of the collected
entities, for each method, we only keep those text-entity pairs
with confidence scores above the median score obtained
for all the analysed text spans. We keep the matching if
the confidence score for one of the two methods is above
the median for the entity linker. In case we have positive
matchings for a company in both methods, we keep the one
provided by BLINK.

4 Profitability Prediction with Knowledge
Graph Embeddings

After constructing our financial knowledge graphs, we aim to
use them to improve price prediction accuracy, where future
predicted prices are used to recommend financial assets. We
therefore define a simple aggregation framework that enables
us to combine knowledge graph information with temporal
pricing information, depicted in Figure 2.

Asset vector generation For each time point t, we remove
those facts in the KG happening after t, and feed the remain-
ing graph into a knowledge graph embedding (KGE) model
to obtain entity embeddings for specific financial assets
targeted for prediction. KGE models encode the information

4https://github.com/JohnSnowLabs/johnsnowlabs

Property Wikidata 10K

Number of entities 102,739 8,380
Number of relation types 114 450
Number of links 457,758 36,973

Table 3: Graph Properties

in the knowledge graph into a compact, low dimensional
space, while preserving the important properties of the graph
[Cai et al., 2018]. These embeddings consider information
about each entity and its relationships with other entities in
the graph.

Separately, for the same time point t, the historical price
data is processed to calculate the technical indicator vector
for each asset/stock. Technical indicators, also referred
to as key performance indicators (KPIs), are heuristics
that encode signals from past pricing information of a
financial asset. These indicators have been shown to be
beneficial in predicting future profitability and are widely
used in training price prediction models [Neely et al., 2014;
Sanz-Cruzado et al., 2022; Naik and Mohan, 2019]. Notably,
these asset vectors vary over time due to frequent updates in
asset pricing and timely revisions of company information
within the constructed graph.
Profitability prediction Once we have the vector represen-
tation for the assets at time t, we train a regression model to
predict the future profitability of the assets and then rank them
by their prediction in descending order. Specifically, given a
prediction time t, we train a model with asset vectors from
time points preceding t to avoid leaking future information.
The target of the regression model is to predict the return on
investment (ROI) over a specified interval ∆t, i.e. the per-
centage change in closing price. As the loss function for our
regression algorithms, we use the squared error.

5 Experiment setup
To assess the effectiveness of the two constructed knowledge
graphs in predicting stock market profitability, we carry out
experiments using U.S. stock market data. Here, we detail the
dataset and the experimental setup used for our analysis.

5.1 Dataset
To conduct our experiments, we collected a dataset from three
major U.S. stock exchanges: NASDAQ, NYSE, and AMEX.
Pricing data: We collect daily pricing data from Yahoo! Fi-
nance5 including open, close, high, low, and volume prices
for 5,823 assets from January 2018 to September 2022.
Wikidata graph: Using the approach described in Section
3.1, we collected 3,370 assets entities from Wikidata, result-
ing in more than 100k entities and 450k relations crawled for
our knowledge graph. Table 3 summarises the total properties
of the crawled Wiki graph.
10K graph: We successfully retrieved 2,264 assets with 10K
reports6 based on the linked assets in the Wikidata graph, re-

5http://finance.yahoo.com
6https://sec-api.io/

http://finance.yahoo.com


sulting in 5,399 filings from 2017-2022. We incorporated an
additional year of data prior to 2018 to ensure a rich dataset
for constructing the initial knowledge graph. Table 3 summa-
rizes the global 10K graph properties.
Dataset split: For each time point, technical indicators and
knowledge graph versions from prior dates are used as input
to predict price changes over a six-month horizon (∆t). For
our experiments, time points on or before the 31st of Decem-
ber 2019 are used for training and the six months following
the 30st of June 2020 are used for testing, maintaining a six-
month gap between those sets to avoid data leakage. Within
the dataset, time points are spaced 1 week apart, selecting the
Monday of each week as t. In total, the training set includes
73 time points, while the test set contains 25.
Dataset post-processing: To ensure data consistency and re-
duce discrepancies, we take the intersection of assets listed
in the pricing data, Wikidata entities and 10K reports. This
results in 2,042 assets for our training set and 2,096 assets for
our testing set. We also exclude 421 upper outliers from our
test set when profits exceed 1.5 times the interquartile range
above the third quartile, which indicate unusually high profits.
These outliers include penny stocks, companies coming back
from bankruptcy, and phenomena like the 2021 meme stock
trading (e.g., GameStop). Including these assets leads to un-
stable evaluations, as their presence among the top-ranked as-
sets can significantly skew metrics like ROI@10.

5.2 Metrics
In order to evaluate our predictions, we consider two differ-
ent metrics: 1) a ranking-oriented metric, monthly return on
investment (ROI), and 2) a global error metric, root mean
squared error (RMSE). We summarise each below:

• Monthly return on investment (ROI@k): we analyse
the average monthly return on investment over the top k
ranked assets. In our experiments, we take k = 10 and
compute the ROI over the 6 months following the date
of the recommendations.

• Root mean-squared error (RMSE): To understand the
model accuracy, we compute the square root of the aver-
age squared difference between predicted and real ROI.

5.3 Model Configuration
Technical indicators: In our experiments, we use 16 differ-
ent KPIs derived from the pricing time series as technical in-
dicators, summarized in Table 4. In order to generalise the
comparison of two knowledge graphs, and reduce the influ-
ence of KPIs on the comparison result, we have chosen two
groups of technical indicators:

• BasicKPIs: average price, return on investment, and
volatility.

• AdvKPIs: all KPIs in Table 4.
Knowledge graph embeddings: We select a set of both pop-
ular and state-of-art KGE models for the experiment, specifi-
cally, 9 KGE models are tested:

• Translation-based embeddings: TransE [Bordes et al.,
2013], TransH [Wang et al., 2014], TransR [Lin et al.,
2015] and RotatE [Sun et al., 2019]

Table 4: Summary of financial technical indicators

Indicator (financial days) Time period ∆t

Average price 28, 63, 126
Return on investment 28, 63, 126
Volatility 28, 63, 126
Momentum 14, 21, 28
Moving average convergence divergence 26
Rate of change 14, 21, 28
Relative strength index 14
Detrended close oscillator 22
Force index 1
Minimum 14, 21, 28
Maximum 14, 21, 28
Chaikin oscillator 10
Average true range 14
Average directional index 14
Vortex indicator 14

• Factorization-based embeddings: RESCAL [Nickel et
al., 2011], HolE [Nickel et al., 2016] and TuckER [Bal-
azevic et al., 2019]

• Neural network-based embeddings: ConvE [Dettmers
et al., 2018] and RGCN [Schlichtkrull et al., 2018]

We use the PyKeen library [Ali et al., 2021] to generate 50-
dimensional embeddings for entities (companies) associated
with each asset. We repeat embeddings generation 5 different
times to analyse the variability across the runs. However, we
use just one random seed for the RGCN model due to its high
computational cost.
Regression Model We opt to use a Random Forest regres-
sion algorithm with 100 trees as our prediction model.

6 Results
In this section we compare the impact of incorporating two
distinct knowledge graphs sourced from Wikidata and 10K
reports on the prediction of asset profitability. In particular,
we investigate the following research questions:

• RQ1: How does the use of the Wikidata and 10K graphs
affect the effectiveness of profitability prediction?

• RQ2: How different are the profitable assets recom-
mended for each knowledge graph?

6.1 RQ1: Graph Performance Comparison
We begin by examining the core question posed in this work:
how do knowledge graphs derived from financial reports vs. a
knowledge base affect financial asset recommendation (FAR)
effectiveness? In particular, we would like to know whether
one knowledge graph provides more useful information than
the other, and whether the approach used to embed the graph
for each company impacts performance.

To answer this question, we compare FAR approaches with
and without knowledge graph embeddings. In particular,
we start with a price-prediction-based baseline referred as
Baseline (Only KPIs), which uses past pricing data to predict
the future price of an asset. For a day, all assets are ranked
by their predicted return-on-investment (RoI) after 6 months.



BasicKPIs AdvKPIs

ROI@10 RMSE ROI@10 RMSE

Group Algorithm 10K Graph Wikidata 10K Graph Wikidata 10K Graph Wikidata 10K Graph Wikidata

Baseline (Only KPIs) 0.0410 0.4574 0.0466 0.4299

Translation-based models

KPIs + TransE 0.04540.04540.0454∗ 0.0368 0.4439† 0.4415† 0.0474∗ 0.0393 0.4277† 0.4289
KPIs + TransH 0.0409 0.0419 0.4408† 0.4383† 0.0467 0.0434 0.4257† 0.4275
KPIs + TransR 0.0435 0.0422 0.4442† 0.4385†∗ 0.0442 0.0454 0.4276† 0.4259†

KPIs + RotatE 0.0427∗ 0.0385 0.4423† 0.4371† 0.0472∗ 0.0403 0.4254† 0.4256†

Factorization-based models
KPIs + RESCAL 0.0418 0.0418 0.4474† 0.4439†∗ 0.0451 0.0447 0.4329 0.4243†∗

KPIs + HolE 0.0418 0.0407 0.4448† 0.4353†∗ 0.0441 0.0442 0.4285 0.4239†∗

KPIs + TuckER 0.0400 0.0409 0.4442† 0.4334†∗ 0.0412 0.0445∗ 0.4298 0.4226†∗

Neural network models KPIs + ConvE 0.0407 0.0450∗ 0.4433† 0.4304†∗ 0.0435 0.0451 0.4269† 0.4207†∗

KPIs + RGCN 0.0423 0.0447 0.4479† 0.4192†∗0.4192†∗0.4192†∗ 0.0423 0.0502∗0.0502∗0.0502∗ 0.4322 0.4126†∗0.4126†∗0.4126†∗

Market 0.0345 - - 0.0345 - -
S&P 500 0.0266 - - 0.0266 - -

Table 5: Performance of random forest regression methods with assets embeddings derived from two knowledge graphs, when predicting
six months into the future. Cell colours go from red (lower) to blue (higher values). Blue cells represent improvements over the baseline
model (only using KPIs) whereas red cells do not improve it. The best value for each algorithm and metric is highlighted in bold. † denotes
significant improvements (Wilcoxon test p < 0.05) with respect to the only KPIs baseline. ∗ indicates significant improvements compared to
the corresponding graph model for the other graph.

To evaluate performance, we report both error between
the prediction and actual RoI (RMSE, lower is better) and
the actual (monthly) RoI of the top 10 recommendations
(RoI@10, higher is better). We have two baseline variants,
denoted BasicKPIs and AdvKPIs, where the latter includes
more technical indicators. As we can see from Table 5, the
baseline models achieve an RoI@10 of 4.1% (BasicKPIs)
to 4.66% (AdvKPIs), which is higher than both the market
average (Market) and S&P 500 (a common index benchmark)
for the same period (also reported at the bottom of Table 5).

Having established our baseline, we now contrast this base-
line to the same model when augmented with the embed-
dings derived from our two knowledge graphs. In Table 5, for
each metric, we include two columns (10K Graph and Wiki-
Data) reporting performance when the baseline is augmented
by each knowledge graph. As there are a range of possible
graph embedding techniques (see Section 2.2), we include
one row for each embedding technique tested, denoted KPIs
+ <KGE> (where <KGE> is a knowledge graph embedding
approach, e.g. TransE). For each column, cells are coloured
from red (worst values) to blue (best values). Blue values
indicate improvements with respect to the baseline, whereas
red values indicate a decline in performance. The best met-
ric values are highlighted in bold, and statistically significant
increases (pairwise Wilcoxon test at p < 0.05) in compari-
son to the Baseline (Only KPIs) model is denoted †. We also
highlight significance differences between the application of
the same model on the two knowledge graphs as ∗.

The first observation is that integrating KGE for profitabil-
ity prediction generally results in RMSE reductions with re-
spect to the baselines (33/36 times). In 30 cases, this reduc-
tion is significant, thus showcasing the capability of knowl-
edge graph information to generate more accurate predic-
tions. When comparing both graphs, the Wikidata KG obtains
lower errors in 15 out of 18 cases (with 11 of them showing
a significant difference) – therefore showing that this graph
provides more accurate results than the 10K graph.

We observe a different pattern when we study the return
on investment over the top-10 ranked results however:
even when most methods using KGE reduce the prediction
error, this fact does not necessarily result in more profitable
recommendation rankings. This is particularly notable for the
methods using the larger set of indicators, where only four
models beat the baseline (TransE, TransH and RotatE for
the 10k graph and RGCN for the Wikidata graph). However,
for both baselines, it is possible to find at least one model
for each graph improving its profitability. In the case of
the BasicKPIs baseline, the best models are TransE for the
10K graph (4.54% ROI@10) and ConvE for the Wikidata
graph (4.47% ROI@10). For AdvKPIs, TransE is again the
best for the 10K graph (4.74% ROI@10), whereas RGCN
is the best for Wikidata (5.02% ROI@10). This illustrates
that both knowledge graphs are capable of providing a useful
profitability signal for the task.

When we compare the effectiveness of the graphs in terms
of ROI@10, we also see that there is a different relationship
between the complexity of the embedding approach and ROI
gain across the two graphs. Specifically, the 10k graph yields
higher ROI for the translation-based algorithms (particularly
the simpler TransE and RotatE models) that perform poorly
when applied on Wikidata. Meanwhile, for the most complex
of tested algorithms (TuckER, and both neural network ap-
proaches, ConvE and RGCN), the Wikidata graph provides
a stronger profitability signal. According to Table 3, the
Wikidata graph contains approximately ten times the num-
ber of entities and links as the 10K graph, indicating a greater
complexity and graph size. Although the simple knowledge
graph embedding models are capable of providing useful
summaries of the 10k graph information, we hypothesize that
the more complex knowledge graph embedding models (spe-
cially those based on neural networks) need a much larger
number of links to learn how to extract stronger profitability
signals from knowledge graphs – hence why RGCN performs
well on Wikidata but not the 10K filings.



Basi
c m

ate
ria

ls

Re
al 

est
ate

Hea
lth

car
e

Con
sum

er 
cyc

lica
l

En
erg

y

Tec
hn

olo
gy

Fin
an

cia
l se

rvi
ces

Com
mun

ica
tio

n s
erv

ice
s

Ind
ust

ria
ls

No c
ate

go
ry

Con
sum

er 
de

fen
siv

e

Utili
tie

s

Sectors

0
20
40
60
80

100
120
140

Co
un

ts
Baseline (Only KPIs)
10K Graph (TransE)
Wikidata Graph (RGCN)

Figure 3: Distribution of profitable assets in the top-10 recommen-
dation rankings across sectors.

To answer RQ1: Both knowledge graphs are capable of
enhancing the accuracy of the predictions – with Wikidata
achieving better results. If we look at returns, however, it
highly depends on the embedding method used. The simpler
translation-based methods favour the use of the smaller 10K
graph, whereas the most complex neural-based methods re-
quire more information to work, which they can obtain from
the Wikidata graph.

6.2 RQ2: Profitable Asset Sector Analysis
Besides raw algorithm performance, we hypothesize that dif-
ferent knowledge graph construction methodologies lead to
the promotion of specific types of assets in the recommen-
dations. For instance, general knowledge graphs might pro-
mote well-known companies as they have more information
about them. As studying these differences is important to un-
derstand the inner workings of these methods, we provide a
preliminary analysis where we study the distribution of rec-
ommended profitable assets across sectors.

To perform this analysis, we identify assets with positive
ROI in the top-10 of the asset rankings and count how
many times each sector is represented. We compare two top
performing models using the basic indicators: TransE for the
10K graph, and RGCN for the Wikidata graph. Although
ConvE provides slightly better performance when using the
basic KPIs for the Wikidata graph, we choose RGCN as it
is the best overall method for this KG. Both BasicKPIs +
TransE (10k) and BasicKPIs + RGCN (WikiData) provide
similar ROI@10 values (4.54% vs. 4.47%), but we hypoth-
esise that source of that profitability might be different.

Figure 3 displays the results of our experiment, where the
x axis shows the different sectors and the y axis shows the
number of profitable assets for each algorithm and sector. In
the plot, we also include the baseline using only technical
indicators as features, for comparison. For many of the
sectors (basic materials, consumer cyclical, energy), similar
numbers of profitable assets are selected by both graphs, but
there are sectors which highlight the differences between
both knowledge bases.

The most important is the healthcare sector. In our data,
the studied test period (June-December 2020) runs during
the Covid-19 pandemic. Due to the pandemic, the value of
healthcare in this period rose. This is observable in our re-
sults, as it is the sector counting the biggest number of prof-
itable assets for the three compared models. However, it is
the models using the 10K graph that recommends more as-
sets from this sector. Considering that 10K filings contain
company projection information, in this case, they enable the
model to capture company outlooks on the Covid-19 pan-
demic and exploit them – something that the Wikidata graph,
containing more general information, does not, as it even re-
duces the number of profitable healthcare recommended as-
sets with respect to the baseline. Instead, the Wikidata graph
takes its improvements from other sectors, like technology or
utilities, for which the graph might contain more data.

To answer RQ2: The knowledge graph construction strat-
egy markedly impacts the types of assets recommended and
this appears to be driven by the types of relationships and
properties captured within each graph, although further in-
vestigation will be needed to conclusively show this.

7 Conclusion & Future Work
In this work, we have explored the impact that two KG con-
struction strategies have when predicting the future returns of
U.S. stocks. For this, we collected a Wikidata subgraph and
a built a graph by automatically extracting factoids from an-
nual 10K filings. We have compared these methods under a
unified FAR model that estimates the profitability of stocks.
This method integrates price technical indicators with asset
KG vectors extracted from the graphs by 9 different knowl-
edge graph embedding models.

Our findings show that both graph types can improve the
profitability of recommendations with respect to only us-
ing price information by up-to 10.7%. However, differ-
ent graphs favour different embedding strategies: graphs ex-
tracted from financial reports tend to be smaller, and therefore
benefit from translation-based models like TransE [Bordes et
al., 2013] or RotatE [Sun et al., 2019], whereas the bigger
Wikidata graph favours complex neural network models like
RGCN [Schlichtkrull et al., 2018].

We have also analysed the distribution of the profitable
assets recommended by the models across sectors, showing
that different knowledge graph construction strategies might
present biases towards certain types of assets. In our experi-
ments, the 10K graph has been able to leverage the informa-
tion regarding global events (in particular, the Covid-19 pan-
demic) available in the reports to promote profitable health-
care stocks, while the more static Wikidata graph has identi-
fied profitable assets in sectors like utilities.

As future work, we aim to compare these knowledge
graphs with others that include other types of financial infor-
mation, such as news or press releases. We also aim to further
analyse the properties of the assets recommended by different
graphs, so we can prevent potential undesired algorithmic be-
haviours. Finally, as in this work we have only used random
forests, we aim to test other FAR algorithms, including those
directly targeting asset ranking [Alsulmi, 2022].
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[Vrandečić and Krötzsch, 2014] Denny Vrandečić and
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