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ABSTRACT
Recommender systems can be helpful for individuals to make well-
informed decisions in complex financial markets. While many stud-
ies have focused on predicting stock prices, even advanced models
fall short of accurately forecasting them. Additionally, previous
studies indicate that individual investors often disregard estab-
lished investment theories, favoring their personal preferences
instead. This presents a challenge for stock recommendation sys-
tems, which must not only provide strong investment performance
but also respect these individual preferences. To create effective
stock recommender systems, three critical elements must be in-
corporated: 1) individual preferences, 2) portfolio diversification,
and 3) the temporal dynamics of the first two. In response, we
propose a new model, Portfolio Temporal Graph Network Recom-
mender PfoTGNRec, which can handle time-varying collaborative
signals and incorporates diversification-enhancing sampling. On
real-world individual trading data, our approach demonstrates supe-
rior performance compared to state-of-the-art baselines, including
cutting-edge dynamic embedding models and existing stock recom-
mendation models. Indeed, we show that PfoTGNRec is an effective
solution that can balance customer preferences with the need to
suggest portfolios with high Return-on-Investment. The source
code and data are available at https://github.com/youngandbin/
PfoTGNRec.
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1 INTRODUCTION
In recent years, there has been a significant increase in the number
of individual investors participating in the stock market. According
to [2], about 58% of U.S. households owned stocks in 2022, up from
53% in 2019, marking the highest growth trend in recent history.
This surge in participation highlights the growing interest in stock
market investment among individual investors.

Despite this increasing engagement, individual investors often
exhibit irrational investment behaviors that negatively impact their
returns. Common behaviors include overconfidence, the disposition
effect, lottery preference, and herding [25]. These tendencies result
in investment returns that are generally lower than the market
average, with the average investor significantly underperforming
the S&P 500 over time [5].

There are many established methods for enhancing portfolio per-
formance, one of the most notable being Modern Portfolio Theory
(MPT) [23]. MPT posits that an investor can achieve higher returns
for a given level of risk, or reduce risk for a given level of expected
return, by selecting a mix of assets. This is accomplished via the
diversification effect, which combines assets with low or negative
correlations. Such diversification is effective in reducing overall
portfolio risk, and it can be further enhanced by using machine
learning techniques [22]. While MPT has been the foundation of
investment management of most institutions [16], individual in-
vestors typically do not follow these sophisticated methods [17, 18].
Instead, their investment decisions are often driven by personal
preferences, which are influenced by various factors such as psy-
chological biases, news, and peers.
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Figure 1: The importance of temporal aspects in stock recommender systems. (A) Various features of stocks would be different
based on the timing of recommendations. (B) Contrasting behaviors between user A, who engages in short-term trading, and
user B, who holds stocks for a long period.

Given these varied influences and the tendency for irrational
investment behaviors, there is a clear need for a stock recommenda-
tion system. Such a system can guide individual investors, helping
them make more disciplined and informed investment decisions.
Indeed, in theory, by leveraging advanced recommendation models,
it should be possible to capture both user preferences and market
dynamics more effectively and concurrently, ultimately improving
the investment outcomes for individual investors.

Creating an effective stock recommendation system involves
several key considerations.

The first is individual preference. In essence, individual in-
vestment behaviors are highly heterogeneous [12–14]. Individual
investors often navigate their unique paths, like interpreting and
assessing information obtained from media and peers, choosing a
few stocks instead of adhering to well-diversified portfolios [15].
For instance, a study analyzing Robinhood investors [39] revealed
the phenomenon of "experience holding," where investors find plea-
sure in simply holding certain stocks that are chosen based on not
purely cash-flow-based perspectives. Bhattacharya et al. [1] found
that most retail investors do not follow unbiased financial advice
from experts. They quoted the famous saying, "You can lead a horse
to water, but you can’t make it drink." That is, even though we can
build a model that exhibits better investment performance, most
retail investors would not take it if they do not like it.

However, most existing studies on investment recommenda-
tion only consider aspects related to the prices of financial assets
[24, 26, 35]. There are two problems with price-based recommenda-
tions. First, it is almost impossible to provide accurate predictions
of financial asset prices. Even the most sophisticated models ex-
hibit accuracy around 52 to 57%, which is not enough to generate
positive returns after transaction fees [42]. Second, they do not
consider individual preferences. As noted before, many individuals
are unlikely to follow recommendations that do not align with their
tastes.

The second is investment performances, specifically, the diver-
sification effect. No matter how well a model aligns with individual
preferences, it is of no use if investment performance is poor. Ac-
cording to the modern portfolio theory originated from [23], diver-
sification involves including stocks with low correlations in a port-
folio to reduce risk and achieve stable returns. The diversification
is crucial in investment management because the price prediction
of financial assets would naturally include substantial error, and it
has been the key success factor of most institutional investors [16].

However, the tricky point in stock recommendation is that the
first two key aspects, individual preference, and investment per-
formance, have a trade-off relationship. In experiments on 12 fi-
nancial asset recommender (FAR) systems [30], it was concluded
that transaction-based and profitability-based metrics are not in-
terchangeable. FAR systems that learned from past pricing history
showed high performance in return but performed poorly in in-
dividual preference, i.e. near zero. Conversely, FAR systems that
learned from past transactions demonstrated good performance in
individual preference but showed a downward trend in return. This
shows that ’customers are not always right’ in stock recommenda-
tions. Therefore, it is inevitable that a trade-off between preference
and profitability will need to be made if we are to achieve better
investment performance for stock recommendation.

Lastly, the temporal nature of stock features and user prefer-
ences is important. Figure 1 illustrates why the temporal aspect
should be considered in stock recommendation. Figure 1 (A) shows
that even the same stock can have very different characteristics de-
pending on the timing of recommendations. If the recommendation
is happening at a time point around the first red box, Stock A would
seem like a good option. However, it would be better not to recom-
mend Stock A during the second and third red boxes. In Figure 1
(B), there are two contrasting investment behaviors: user A engages
in short-term trading, while user B holds stocks for an extended
period. Thus, it is essential to consider the temporal dynamics of
user behaviors.

In this paper, we propose a stock recommender system called
Portfolio Temporal Graph Network Recommender (PfoTGNRec).
The proposed model is based on a temporal graph network, de-
veloped by [28], to extract time-varying collaborative signals (key
aspects 1 and 3: individual preference and temporal nature). Further,
we incorporate MVECF [4] method in sampling contrastive pairs
to enhance the diversification effect (key aspect 2: investment per-
formance). Through experiments, we demonstrate that our model
is the most effective in improving investment performance while
capturing user preferences, achieving a 3.45% improvement in a
comprehensive combinedmetric compared to the best model among
various baselines, including recently developed dynamic graph em-
bedding models and existing stock recommendation models.
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2 RELATEDWORKS
2.1 Stock Recommendations
Collaborative filtering (CF), which leverages historical user-item
interactions, is one of the fundamental and most successful tech-
niques in recommender systems. Methodologies include matrix
factorization [20] that decomposes user-item interaction matrix to
capture latent relationships between users and items, and Bayesian
personalized ranking (BPR) [27] that operates by determining per-
sonalized ranking of items based on user preferences.

For stock recommendations, [31] propose a CF-based model that
takes into account both individual preferences and portfolio diver-
sification. However, CF and portfolio optimization are performed
in distinct steps, and such a heuristic approach would lead to sub-
optimal results. [4] were the first to develop a holistic model that
can effectively handle the trade-off between individual preferences
and investment performance. They incorporated modern portfolio
theory into a matrix factorization model, as well as developed an
associated ranking loss function which can be applied to more ad-
vanced models (e.g., GNN-based models). However, all these models
do not consider the temporal dynamics of stock features and user
preferences.

On the other hand, there have been several attempts to adapt tem-
poral models for stock recommender systems [7, 8, 37]. However,
they focus predominantly on price prediction without consider-
ation of the individual preferences of users. Meanwhile, [9, 32]
address the dynamic characteristics of financial markets and user
preference, but they fail to systemically address the diversification
effect. In contrast, our model aims to simultaneously consider both
user preferences and the diversification effect, optimizing stock
recommendations holistically.

2.2 Dynamic Graph Learning
In recommender systems, many methodologies utilize graph con-
volutional networks (GCNs) [19]. This is because the user-item
interactions form a graph structure, allowing effective representa-
tion learning from such graphs. For example, NGCF [38] leverages
collaborative signals in high-order connectivities. LightGCN [10] is
specifically designed to enhance scalability, resulting in accelerated
training and inference times.

Unlike the typical graph neural networks (GNNs) that learn
node embeddings in static graphs, learning embeddings in dynamic
graphs where connections change over time requires considering
the temporal aspect. For instance, TGAT [41] introduces a time
encoding technique upon GAT [36], which is a graph attention
mechanism applied to static graphs. In addition, TGN [28] proposes
a more general framework that can incorporate node-wise tempo-
ral features. This is an encoder that generates node embeddings at
each time step. While this framework has been utilized in various
graph tasks, there has been no research applying it to recommender
systems thus far. In this study, we aim to leverage this framework
for recommendation purposes. Comparatively, there have been few
works that attempt dynamic graph embedding in recommender sys-
tems. For example, TGSRec [6] introduces a temporal collaborative
Transformer to explicitly model the temporal effects of interactions.
Meanwhile, DGEL [33] refines embeddings based on previous time
related embeddings. However, they rely on time encoding without

the inclusion of an explicit memory updater, limiting their ability
to effectively capture the node history. In contrast, our model uti-
lizes the TGN framework for recommendation task to leverage its
capabilities for explicitly embedding node memories with its strong
embedding performance.

3 PRELIMINARIES
ProblemDefinition: Let us define the task associatedwith stock

recommendations.We denote the set of users as𝑈 = {𝑢1, 𝑢2, ...𝑢 |𝑈 | },
the set of items (stocks) as 𝑉 = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 | }, and the set of time
points as 𝑇 = {𝑡1, 𝑡2, ...𝑡 |𝑇 | }. Then, a user-item interaction can be
represented as 𝑦𝑡𝑢,𝑣 . If user 𝑢 purchases the item 𝑣 at time 𝑡 , then
𝑦𝑡𝑢,𝑣 = 1; otherwise𝑦𝑡𝑢,𝑣 = 0. Our primary goal is to predict the value
of 𝑦𝑡𝑢,𝑣 . Ultimately, for each user and time, the model aims to recom-
mend the top-k items, leading to a personalized and time-sensitive
set of stock recommendations that can improve the portfolio’s in-
vestment performance.

Continuous Time Dynamic Graph: We construct a dynamic
graph with user-item interactions, changing its structure over time.
We define our continuous-time bipartite graph as G(𝑇 ) = (V, E𝑇 ).
Here, V represents the set of user and item nodes. E𝑇 denotes
the temporal set of edges. Each edge in E𝑇 is characterized by a
tuple 𝑒 = (𝑢, 𝑣, 𝑡, e𝑢𝑣), consisting of a user node 𝑢, an item node
𝑣 , a timestamp 𝑡 , and an edge feature e𝑢𝑣 . If a user interacts with
the same item multiple times, each interaction is represented as a
distinct edge in the graph. This approach enables the construction of
a dynamic graph that accurately captures the evolving relationships
between nodes over time.

4 METHOD
We present the PfoTGNRec model, which consists of three integral
components: (1) Dynamic embedding learning, where we utilize
TGN encoder to effectively learn the evolving characteristics of
user-item interactions, (2) Mean-variance efficient sampling, which
involves strategic item sampling and designing contrastive pairs to
enhance the user portfolio, and (3) Optimization, where the model
is trained with Bayesian Personalized Ranking (BPR) loss.

4.1 Dynamic Embedding Learning
First, we learn node embeddings from our dynamic graph con-
structed from user-item interactions, which are later used when
calculating recommendation scores.

4.1.1 Memory embedding. We generate memory embeddings for
each node to capture the dynamic nature. The process begins with
the extraction of information from each node, termed as “message”.
In the case of an interaction between source node (𝑖) and destination
node ( 𝑗 ) at time 𝑡 , two messages are computed:

𝑚𝑖 (𝑡) = 𝑠𝑖 (𝑡−) ∥𝑠 𝑗 (𝑡−) ∥Δ𝑡 ∥e𝑖 𝑗 (1)

and
𝑚 𝑗 (𝑡) = 𝑠 𝑗 (𝑡−) ∥𝑠𝑖 (𝑡−) ∥Δ𝑡 ∥e𝑗𝑖 (2)

Here, ∥ is a concatenation operator, 𝑠𝑖 (𝑡−) and 𝑠 𝑗 (𝑡−) represent
the memory at the previous time step for the source and destination
nodes, respectively, Δ𝑡 is the time interval 𝑡 − 𝑡− , and e𝑖 𝑗 is the
edge feature.
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Figure 2: Model architecture of our proposed PfoTGNRec.

In the memory update process, a recurrent neural network ap-
proach is employed to update the memory of a node following each
interaction that involves the node itself. Specifically, GRU [3] is
utilized in our model, and the memory is updated as follows:

𝑠𝑖 (𝑡) = 𝐺𝑅𝑈 (𝑚𝑖 (𝑡), 𝑠𝑖 (𝑡−)) (3)

4.1.2 Graph embedding. In this module, temporal embeddings for
a dynamic graph are generated. In specific, embeddings are created
for each node at time step 𝑡 . Graph attention is utilized to effectively
learn the connectivity between nodes. A node embedding can be
represented as:

z𝑖 (𝑡) =
∑︁

𝑗∈𝑛𝑘
𝑖
(𝑡 )
𝑎𝑡𝑡𝑛

(
𝑠𝑖 (𝑡), 𝑠 𝑗 (𝑡), e𝑖 𝑗

)
(4)

where 𝑎𝑡𝑡𝑛 refers to the graph attention mechanism as described
in [28], 𝑠𝑖 (𝑡) and 𝑠 𝑗 (𝑡) represent the memory, e𝑖 𝑗 is the edge feature,
and the neighborhood set of node 𝑖 , denoted as 𝑛𝑘

𝑖
(𝑡), refers to the

𝑘-hop temporal neighbors connected at time 𝑡 .

4.2 Mean-Variance Efficient Sampling
Unlike conventional recommender systems that sample contrastive
pairs based on user purchase history or user-item similarity, we
take into account the portfolio diversification effect. In other words,
while performing positive and negative sampling based on user-
item interactions, we are motivated by MVECF [4] to reflect rank-
ings according to mean-variance when sampling items. Consider
user 𝑢 bought item 𝑣 at time 𝑡 . At this interaction point, a user’s
current portfolio 𝑃𝑂𝑢,𝑡 consists of items that the user holds at 𝑡 ,
representing a collection of various stocks. Then, we randomly
sample a set of candidate items 𝐶𝑢,𝑡 that do not belong to the user
portfolio 𝑃𝑂𝑢,𝑡 , from the item set 𝑉 .

𝐶𝑢,𝑡 ← sample(𝑉 − 𝑃𝑂𝑢,𝑡 ) (5)

Now, we create two ranked lists using the candidate items: (1) a
preference-based list and (2) a portfolio-based list. In (1) preference-
based list, the item that the user has actually purchased at that time

is ranked first, and candidate items are ranked randomly in the
remaining positions. (2) The portfolio-based list ranks the items
based on their profitability and volatility, regardless of the user’s
preferences. This is done by calculating the mean-variance score
for each item and ranking them in descending order of their scores.

Themean-variance score is designed to consider the effectiveness
of adding an item to the existing portfolio in enhancing diversifi-
cation effects. The modified target rating in the MVECF, 𝑦𝑀𝑉

𝑢𝑖
, is

calculated as follows:

𝑦𝑀𝑉
𝑢𝑖 =

𝜇𝑖
𝛾 −

1
2
∑

𝑗 :𝑗≠𝑖
1
|𝑦𝑢 | 𝜎𝑖 𝑗

𝜎2
𝑖

(6)

Here, 𝛾 is a hyperparameter for risk-aversion level and |𝑦𝑢 | rep-
resents the number of holdings of user u. We calculated the mean
return and variance of items, denoted by 𝜇 and 𝜎 respectively, based
on the prices over the next 30 days from the point of calculating
the MV score. As the formula indicates, 𝑦𝑀𝑉

𝑢𝑖
assigns higher values

to items that increase returns while decreasing risk, when added to
the user’s current portfolio.

To get the final rank of items, we combine the preference-based
list and portfolio-based list by calculating a weighted sum of the
rankings from them. Here, the weight 𝜆𝑀𝑉 ranges from 0 to 1.
Finally, we choose positive and negative items from the final rank.
The items ranked at the top are sampled as positive items 𝑃𝑢,𝑡 , while
the items ranked at the bottom are sampled as negative items 𝑁𝑢,𝑡 .
In this study, we selected one top-ranked item as positive and three
bottom-ranked items as negative.

𝑃𝑢,𝑡 = top-ranked items from the final rank (7)
𝑁𝑢,𝑡 = bottom-ranked items from the final rank (8)

4.3 BPR Loss
Following the typical recommender systems, we employ the BPR
loss to train the model. At the time when the interaction takes place,
we sample positive and negative items with mean-variance efficient
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sampling. Then, BPR loss is applied to calculate scores for pairs of
positive and negative items.

L𝐵𝑃𝑅 =
∑︁

(𝑢,𝑝,𝑛,𝑡 ) ∈𝐷
− log𝜎

(
z𝑢 (𝑡)𝑇 z𝑝 (𝑡) − z𝑢 (𝑡)𝑇 z𝑛 (𝑡)

)
(9)

In this equation, 𝐷 denotes the edge set, which is derived from
E𝑇 , 𝑢 represents user, 𝑝 represents the positive item selected from
𝑃𝑢,𝑡 , and 𝑛 is the negative item selected from 𝑁𝑢,𝑡

5 EXPERIMENT
In this section, we explain how we assessed the performance of our
proposed model using a Greece trading dataset collected from real
customer investment transactions. We formulated our experimental
questions based on two pivotal aspects that ought to be considered
in PfoTGNRec: recommendation and portfolio performance. We aim
to answer the following research questions:

• RQ1: Can PfoTGNRec provide a better trade-off between rec-
ommendation and investment performance than past stock
recommendation algorithms?
• RQ2: How effective is PfoTGNRec in comparison to past
stock recommendation algorithms on predicting individual
customer investments (recommendation performance)?
• RQ3: How profitable are the recommendations provided
by PfoTGNRec in comparison to past stock recommendation
algorithms (portfolio or investment performance)?
• RQ4: How do PfoTGNRec hyperparameters affect its invest-
ment and recommendation performance?

5.1 Experimental Settings
5.1.1 Dataset. We conduct experiments using individual investor
transaction dataset, provided by National Bank of Greece [29]. This
dataset includes real transaction data of users and represents a
snapshot of the Greek market. The data spans from January 2018
to November 2022 comprising user buy orders during this period.
To exclude abnormal transactions, we remove stocks with highly
unstable price movements. We use daily adjusted closing prices
for the temporal features of stocks, retrieved from an open source
Python package yfinance.

For the sake of conducting stable experiments, we perform some
filtering on items. We use stock price data from Yahoo Finance, and
stocks and dates that do not exist in Yahoo Finance are excluded
from the data. Additionally, to eliminate stocks that have been
halted in trading, we remove stocks with no price changes for 30
consecutive days. As a result, the average number of interactions
per user is 18.24, with a median of 5. For the number of interactions
per item, the average is 1,653.09, with a median of 393.

To obtain real-time user portfolios of users during the data pe-
riod, we utilize buy and sell orders along with the quantities of
stocks ordered. Portfolios represent users’ stock holdings for each
interaction as the set of stocks held up to the day before. The aver-
age number of stocks in user portfolios is 6.26, with a median of 5.
The minimum number of stocks is 0, and the maximum is 47. Most
users hold fewer than 10 stocks in their portfolios.

For the edge features that change over time, we use daily ad-
justed closing prices of the most recent 30 trading days before each
interaction.

For the data split, we utilize a chronological approach based on
interaction timestamps to partition the dataset into training, vali-
dation, and testing sets. This division follows a ratio of 8:1:1, which
preserves the temporal order of interactions. Ultimately, we use
data consisting of 8,337 users, 92 stocks, and 152,084 interactions.

5.1.2 Baseline. We have selected the baseline models based on the
following three categories.

Recommender models: We compare our model with compet-
itive transaction-based algorithms, both static and dynamic. The
static methods include Pop, BPR [27], WMF [11], LightGCN [10]
which is a static graph learning method, and SGL [40] which lever-
ages a self-supervised learning approach. For dynamic methods, we
consider state-of-the-art dynamic graph learning models including
DyRep [34], Jodie [21], TGAT [41], and TGN [28]. While most dy-
namic methods have not been utilized for recommendation tasks,
we adapt their original architectures to recommendation task by
incorporating negative sampling during training and applying BPR
loss.

Price-based models: We include risk-return approaches that
focus solely on prices rather than transactions. Return and Sharpe
model refer to non-personalized models recommending stocks that
had the best return and Sharpe ratio over the 30 days before the
start of the testing period, respectively. Even the most sophisticated
stock price forecasting models (e.g., [42]) show an accuracy around
55%, these simple models can serve as good proxies of such models.

Stock recommendation models: We consider the two most
advanced stock recommendation models, which are the two-step
method [31] and MVECF [4]. Both can be regarded as static meth-
ods.

5.1.3 Evaluation (Recommendation). For the evaluation of recom-
mendation performance, we employ the Hit Ratio (HR) and Nor-
malized Discounted Cumulative Gain (NDCG). All models follow
an interaction-based ranking strategy, consistent with the settings
in [21]. In other words, for each testing interaction (𝑢, 𝑣, 𝑡), a list of
recommended items was generated. For static models that cannot
provide different recommendations for each test interaction, the
same item set ranked within the train period is used throughout
all test periods. To evaluate the performance, we utilize items from
the entire item set, excluding those that are in the user’s portfolio
at each time point.

5.1.4 Evaluation (Investment). To evaluate investment performance,
we utilize return and Sharpe ratio. For all models, we compare the
user’s original portfolio with the portfolio after the recommenda-
tion for each testing interaction (𝑢, 𝑣, 𝑡). We constructed the rec-
ommended portfolio by adding the top 𝐾 stocks with the highest
recommendation scores to the original portfolio.

In specific, we measure the improvement of investment perfor-
mance in two ways. First, difference. The difference in the Sharpe
ratio and return is denoted as △𝑆𝑅 = 𝑆𝑅 −𝑆𝑅init and △𝑅 = 𝑅 −𝑅init,
respectively. Here, terms appended with “init” represent the orig-
inal portfolio (before recommendation), whereas those without



ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Youngbin Lee, Yejin Kim, Javier Sanz-Cruzado, Richard McCreadie, and Yongjae Lee

the suffix refer to the recommended portfolio (after recommen-
dation). These values are calculated for all users and then they
are averaged. Second, the percentage of users whose investment
performance becomes better after the recommendation. The im-
provement percentage in the Sharpe ratio and return are expressed
as 𝑃 (𝑆𝑅) = 𝑃 (𝑆𝑅 > 𝑆𝑅init) and 𝑃 (𝑅) = 𝑃 (𝑅 > 𝑅init). To evaluate
the actual portfolio performance in the stock market when a stock
is recommended, we employ out-of-sample assessments. That is, at
the testing point, the investment performance is calculated based
on the returns over the next 30 days.

5.1.5 Configuration. We train all models for 20 epochs and the
reported results are based on the test data with the best performing
model selected within the validation set. For model selection, we
use NDCG@5 for recommender, price-based models, and a holistic
approach for stock recommendation models and our model, consid-
ering both recommendation and investment performance. This is
achieved by employing the validation data to independently rank
the models based on their performance in NDCG@5 and 𝑃 (𝑆𝑅)@5.
Then, the averages of these rankings are used to determine the final
model. For a fair comparison, we conduct hyperparameter tuning
for all models.

5.2 Combined Recommendation and Portfolio
Performance (RQ1)

For a comprehensive evaluation of user preferences and portfolio
performance, we select two representative metrics: NDCG@5 and
P(SR)@5. NDCG@5 is a recommendation performance metric that
measures how highly the items actually purchased by the user are
ranked on the list of recommended items. P(SR)@5 is an invest-
ment performance metric that measures the proportion of users
who experienced an improvement in their portfolio Sharpe ratio.
These metrics are visualized in Figure 3. Since higher values for
both metrics indicate better performance, models positioned at the
outermost points in the graph exhibit the most balanced perfor-
mance. As shown in Figure 3, our model demonstrates the best
performance.
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Figure 3: Visualization of Comparison of Both Recommen-
dation and Portfolio Performance

Model 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7
Pop 0.3149 0.3584 0.4019 0.4454 0.4889
WMF 0.4516 0.4627 0.4738 0.4850 0.4961
BPR 0.5294 0.5337 0.5380 0.5423 0.5466
LightGCN 0.5087 0.5169 0.5250 0.5332 0.5414
SGL 0.5081 0.5145 0.5210 0.5274 0.5338
Return 0.1422 0.1774 0.2126 0.2477 0.2828
Sharpe 0.1688 0.2113 0.2539 0.2965 0.3390
MVECF 0.2981 0.3279 0.3578 0.3876 0.4174
two-step 0.3563 0.3875 0.4186 0.4497 0.4809
DyRep 0.3617 0.3872 0.4128 0.4383 0.4638
Jodie 0.4434 0.4632 0.4831 0.5030 0.5228
TGAT 0.5021 0.5166 0.5311 0.5456 0.5601
TGN 0.5207 0.5250 0.5292 0.5335 0.5378
PfoTGNRec 0.5334 0.5450 0.5566 0.5683 0.5799

Note: The best and the second best performing models are highlighted in bold and
underline, respectively.

Table 1: Comparison of Models Based on Weighted Metric of
Recommendation and Portfolio Performance

To provide a precise numerical comparison, we use a combined
metric of NDCG@5 and P(SR)@5. We calculate the weighted av-
erage of these two metrics using the weight 𝛼 . Specifically, we
compute

𝑚@5(𝛼) = 𝑁𝐷𝐶𝐺@5 × (1 − 𝛼) + 𝑃 (𝑆𝑅)@5 × 𝛼 (10)

and vary 𝛼 from 0.3 to 0.7 to observe performance across differ-
ent balances. Table 1 displays the overall performance compared
to the baseline for various values of 𝛼 . Our model consistently
outperforms all baseline models across both recommendation and
investment metrics. Therefore, it is evident that our model offers
the most balanced approach, enhancing investment performance
while reflecting individual preferences.

5.3 Recommendation Performance (RQ2)
As shown in Table 2, recommender models consistently outperform
price-based and stock recommendationmodels, demonstrating their
effectiveness in capturing user preferences. Interestingly, despite
the expectation that dynamic models would surpass static mod-
els in performance, both types exhibited similar performance. To
investigate this, we further analyze the results based on testing inter-
actions where items not purchased during the training period were
subsequently purchased. This analysis reveals a significant drop in
the performance of static recommendation models, while dynamic
recommendation models perform markedly better. For example, the
best-performing static model, BPR, achieves an NDCG@5 of 0.0416.
In contrast, the best-performing dynamic model, TGN, achieves an
NDCG@5 of 0.4535. This difference underscores the limitations of
static recommendation models, which tend to recommend items
that users have already purchased. In the context of stock recom-
mendation, users may indeed repurchase previously bought items.
However, recommending only previously purchased items does
not contribute to portfolio diversification. Consequently, dynamic
models clearly have an advantage in offering more diverse recom-
mendations.
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Recommendation effectiveness Portfolio performance

Model HR@3 HR@5 NDCG@3 NDCG@5 P(R)@3 P(R)@5 P(SR)@3 P(SR)@5 ΔR@3 ΔR@5 ΔSR@3 ΔSR@5

Pop* 0.1586 0.2787 0.1355 0.1845 0.5174 0.5479 0.5670 0.6193 -0.003 0.0106 0.1860 0.3533
WMF* 0.4654 0.5588 0.3797 0.4183 0.4561 0.4417 0.5228 0.5294 -0.0212 -0.0379 0.0374 0.0408
BPR* 0.5635 0.6538 0.4794 0.5166 0.5234 0.4970 0.5595 0.5594 0.0064 -0.0079 0.1499 0.1555
LightGCN* 0.5378 0.6399 0.4419 0.4841 0.5333 0.5041 0.5712 0.5660 0.0083 -0.0055 0.1664 0.1663
SGL* 0.5297 0.6054 0.4578 0.4888 0.5071 0.4912 0.5558 0.5531 -0.0003 -0.0223 0.1325 0.0908

Return 0.0389 0.0621 0.0274 0.0368 0.3065 0.3438 0.3403 0.3883 -0.1747 -0.1819 -0.5236 -0.4699
Sharpe 0.0453 0.0665 0.0324 0.0411 0.4137 0.4174 0.4743 0.4667 -0.0832 -0.1011 -0.1269 -0.1362

two-step* 0.2767 0.3834 0.2193 0.2629 0.4479 0.4425 0.5526 0.5743 -0.0227 -0.0335 0.1457 0.1849
MVECF* 0.2170 0.2321 0.2025 0.2087 0.4286 0.4149 0.5081 0.5068 -0.0426 -0.0644 -0.0281 -0.0482

DyRep 0.3047 0.4533 0.2243 0.2852 0.4581 0.4499 0.5383 0.5403 -0.0235 -0.034 0.0769 0.0919
Jodie 0.4324 0.5757 0.3247 0.3838 0.5156 0.4924 0.5757 0.5824 0.0074 -0.0022 0.2186 0.2617
TGAT 0.5138 0.6318 0.4100 0.4585 0.5826 0.5423 0.6129 0.6037 0.0460 0.0343 0.3178 0.3452
TGN 0.5673 0.6809 0.4611 0.5079 0.5405 0.5107 0.5612 0.5506 0.0260 0.0075 0.1959 0.1899

PfoTGNRec 0.5572 0.6674 0.4532 0.4986 0.5652 0.5434 0.6125 0.6147 0.0407 0.0349 0.3053 0.3649
Note: Models with * exclude cold start user results. The best and second best performing models are highlighted in bold and underline, respectively.

Table 2: Comparison of Models Based on Various Metrics

Compared to dynamic recommender models, our model outper-
forms other models but falls slightly short of TGN. This is because
we intentionally sacrificed a certain level of recommendation per-
formance through mean-variance efficient sampling to enhance the
diversification effect. As expected, price-based models and exist-
ing stock recommendation models show lower recommendation
performance. These models do not effectively capture individual
preferences.

5.4 Portfolio Performance (RQ3)
In terms of investment performance, the results indicate that our
model generally recorded superior performance across most met-
rics, despite a few exceptions. In particular, the price-basedmethods,
the Return model, and the Sharpe model rank near the bottom in
terms of investment performance, demonstrating the difficulty of
predicting future prices based on past prices. This highlights the
fundamental challenge of stock price prediction. Surprisingly, the
Pop model shows high investment performance in some metrics,
which appears to be due to the presence of a popularity bias in
the data regarding investment performance. However, this model
is not suitable as a stock recommendation model because its rec-
ommendation performance is very poor. Interestingly, the stock
recommendation models, Two-Step and MVECF, have failed to
demonstrate competitive investment performance. This is likely
due to their inability to effectively manage the dynamic nature of
stock features and user behaviors.

5.5 Hyperparameter Study (RQ4)
To thoroughly investigate the impact of various hyperparameters
on our model’s performance, we conduct an extensive hyperpa-
rameter study with six key hyperparameters: batch size, node di-
mension, number of candidate items, number of negative items,
𝛾 , and 𝜆𝑀𝑉 . For evaluation metrics, we select NDCG@5 to rep-
resent recommendation performance and P(SR)@5 to represent

portfolio performance. By analyzing these metrics, we aim to de-
rive insights into the trade-offs and interactions between different
hyperparameters, thereby guiding the optimization of our model
for both recommendation and investment tasks. The results are
shown in Figure 4.

• Batch Size: The analysis reveals that NDCG@5 exhibits a slight
increase with larger batch sizes, while P(SR)@5 demonstrates a
decreasing trend. This indicates that although larger batches may
enhance recommendation quality, they can negatively impact in-
vestment performance more than they improve recommendation
effectiveness.

• Node Dimension: NDCG@5 remains relatively stable across
varying node dimensions. However, P(SR)@5 displays notable
fluctuations, indicating that the choice of node dimension is criti-
cal. Additionally, larger node dimensions can store more infor-
mation, potentially enhancing performance.

• Number of Candidate Items: The number of candidate items
does not appear to significantly influence NDCG@5. However,
P(SR)@5 shows some variability with changes in the number
of candidate items. As the number of candidate items increases,
the complexity of mean-variance efficient sampling also rises,
highlighting the importance of determining an optimal number
of candidate items.

• Number of Negative Items: Both NDCG@5 and P(SR)@5 show
an increasing trend with the number of negative items. This posi-
tive correlation suggests that incorporating a higher number of
negative samples enhances both recommendation and investment
performance. However, increasing the number of negative items
also may lead to longer computation times, making it crucial to
determine an optimal number of negative items.

• 𝜸 : It exhibits a peak in both NDCG@5 and P(SR)@5 at the value
of 1. When performing mean-variance efficient sampling, the
weight given to the volatility relative to the return of the stocks
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Figure 4: Hyperparameter study of the PfoTGNRec

changes according to the value of 𝛾 . Therefore, optimizing this
hyperparameter is crucial.

• 𝝀𝑴𝑽 : Our findings reveal that 𝜆𝑀𝑉 has the most significant im-
pact on both metrics. NDCG@5 decreases sharply with increasing
𝜆𝑀𝑉 , indicating a negative impact on recommendation perfor-
mance. In contrast, P(SR)@5 shows a peak at a specific 𝜆𝑀𝑉 value.
Although 𝜆𝑀𝑉 is a hyperparameter that balances recommenda-
tion and portfolio performance, the inherent uncertainty in pre-
dicting future prices leads to inconsistent impact on investment
performance.

6 CONCLUSION
In this paper, we present PfoTGNRec, a novel framework tailored for
stock recommender systems, focusing on two key aspects: captur-
ing the temporal dynamics of the stock market and user preference
and integrating portfolio diversification into recommendations. Us-
ing temporal graph networks, PfoTGNRec effectively models user
preferences that change over time, with a novel training approach
specifically designed for portfolio diversification, balancing user
preferences with investment risk management. Experiments have
demonstrated PfoTGNRec’s effectiveness, showing competitive rec-
ommendation accuracy and improved portfolio performance.

For future work, we propose incorporating static features of
users and items as node features to enhance the model’s ability to
capture inherent characteristics that influence user behavior and
stock performance. Additionally, expanding the recommendation
system to account for various user behaviors, such as selling, hold-
ing, and ordering will provide a more comprehensive understanding
of users and improve the relevance of recommendations. By ad-
dressing these areas, we aim to further enhance the robustness and
applicability of PfoTGNRec in the real world.
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