
Effective Contact Recommendation in Social Networks
by Adaptation of Information Retrieval Models

Javier Sanz-Cruzadoa,∗, Pablo Castellsa, Craig Macdonaldb, Iadh Ounisb

aUniversidad Autónoma de Madrid, Escuela Politécnica Superior, C/Francisco Tomás y
Valiente,11,28049, Madrid, Spain

bSchool of Computing Science, University of Glasgow, Lilybank Gardens, G12 8QQ,
Glasgow, Scotland, United Kingdom

Abstract

We investigate a novel perspective to the development of effective algorithms
for contact recommendation in social networks, where the problem consists of
automatically predicting people that a given user may wish or benefit from
connecting to in the network. Specifically, we explore the connection between
contact recommendation and the text information retrieval (IR) task, by investi-
gating the adaptation of IR models (classical and supervised) for recommending
people in social networks, using only the structure of these networks.

We first explore the use of adapted unsupervised IR models as direct stan-
dalone recommender systems. Seeking additional effectiveness enhancements,
we further explore the use of IR models as neighbor selection methods, in place
of common similarity measures, in user-based and item-based nearest-neighbors
(kNN) collaborative filtering approaches. On top of this, we investigate the
application of learning to rank approaches borrowed from text IR to achieve
additional improvements.

We report thorough experiments over data obtained from Twitter and Face-
book where we observe that IR models, particularly BM25, are competitive
compared to state-of-the art contact recommendation methods. We provide
further empirical analysis of the additional effectiveness that can be achieved
by the integration of IR models into kNN and learning to rank schemes. Our
research shows that the IR models are effective in three roles: as direct contact
recommenders, as neighbor selectors in collaborative filtering and as samplers
and features in learning to rank.

Keywords: social networks, contact recommendation, information retrieval
models, k nearest neighbors, learning to rank, collaborative filtering

∗Corresponding author
Email addresses: javier.sanz-cruzado@uam.es (Javier Sanz-Cruzado),

pablo.castells@uam.es (Pablo Castells), craig.macdonald@glasgow.ac.uk (Craig
Macdonald), iadh.ounis@glasgow.ac.uk (Iadh Ounis)

Preprint submitted to Elsevier February 2020

1. Introduction

The creation of online social network applications such as Twitter, Facebook
and LinkedIn, and their subsequent expansion along the 2,000s has given rise to
new perspectives and challenges in the information retrieval (IR) field and, as a
particular case, in recommender systems. One of the most compelling problems
in this area is recommending people with whom users might want to engage in
an online network. The social nature of these networks, and the large amount
of users accessing them every day has raised the need for contact recommenda-
tion in both industry [23, 26] and within the research communities [9, 27, 28].
The most prominent social platforms routinely offer user recommendation ser-
vices since the end of the past decade, with systems such as ‘Who-to-follow’ on
Twitter [23, 26] or ‘People you may know’ on Facebook and LinkedIn.

Contact recommendation represents a very particular perspective of the rec-
ommendation task. First, the recommendation domain lays connections to
social network analysis and network science, with rich potential implications
[27, 55]. Second, while in most domains, users and items are different objects,
the task of contact recommendation has the peculiar and interesting character-
istic that users and items are the same set. These particularities have motivated
the creation of a wide variety of people recommendation algorithms from diverse
fields, such as network science [35, 38], machine learning [29], recommender sys-
tems [28] and, to a lesser extent, information retrieval [28]. The confluence of
recommendation and online social networks has also motivated the research of
social item recommendation methods, which augment their input with network
structures (in addition to the observed user-item interactions), while keeping
a traditional item space (movies, songs, news, posts, purchases, etc.) as their
output range for recommendation [20, 21, 60]. Different from this line of de-
velopment, our present work specifically focuses on recommendation where the
output consists of people in the network rather than any other different set of
items.

In this context, our research investigates the relation between contact rec-
ommendation in social networks and text retrieval. As a canonical formulation
of the problem, we consider recommendation based on the network structure
only (i.e. not using side-information of any kind). Our research aims to make
contributions at two levels: a) at a theoretical level, an enhanced understanding
of the contact recommendation problem, through new connections to the infor-
mation retrieval and recommender systems tasks, concepts and techniques, and
b) at a practical level, opening new pathways for the development of new and
effective contact recommendation methods by importing information retrieval
models and algorithms. The adaptation of IR models to the recommendation
task has been researched at a generic level [13, 47, 64, 65], but the specific
adaptation to recommend people in social networks is a qualitatively different
problem, as we see in Sections 4 and 5, and a largely unexplored direction.

For such a purpose, we establish associations between the fundamental el-
ements involved in both tasks, in order to adapt classic IR models to the task
of suggesting people in a social network. In particular, we explore the adap-

2

tation of a wide range of IR models in the task of contact recommendation,
namely the vector space model [53] (VSM), BM25 [50], query likelihood [48]
and the divergence from randomness models [4, 8]. We empirically compare the
effectiveness of the resulting algorithms to state-of-the-art contact recommen-
dation methods over data samples extracted from Twitter and Facebook. We
find that the adapted IR models, particularly BM25, are competitive with the
best alternative contact recommendation approaches.

We further close the effectiveness gap between the IR models and the best
alternative contact recommendation approaches in terms of relevance metrics,
by using the IR model adaptations in the role of similarity measures between
users as part of a kNN collaborative filtering scheme. The dual role of users as
candidate recommended “objects” or as “third-person” neighbors enables this
new use of IR models as a component in a kNN construct rather than as a final
recommendation method.

Finally, we study the use of supervised learning to rank techniques, originally
found to be effective in text retrieval, and propose a framework to use them for
the recommendation of social links. We then study the use of ensembles of IR-
based models, achieving yet an additional improvement in terms of relevance
over the best alternatives in our original comparison.

This paper continues previous work where we initially explored the adap-
tation of IR models as contact recommendation algorithms [56]. Our initial
results showed that basic text IR models can be both effective and efficient as
contact recommendation algorithms when applied to dynamic interaction net-
works. These results encouraged us to further explore this idea, and develop new
people-to-people recommendation approaches based on IR. Beyond the original
work, this article extends the previous research in several new directions:

• We extend the set of IR models adapted in previous work, adding di-
vergence from randomness models [4, 8] as contact recommendation ap-
proaches, with competitive results.

• We propose the use of IR models in the role of similarity functions in a
user-based and item-based kNN framework, obtaining further effectiveness
improvements, which are quite substantial with respect to the IR models
used as standalone recommendation algorithms.

• We design a framework for adapting supervised learning to rank IR tech-
niques to contact recommendation, and we evaluate their effectiveness by
building ensembles of IR models, deriving yet additional enhancements.

• We test the adaptation of IR models – including prior and present pro-
posed approaches – on further types of social networks, including not only
interaction networks, but also explicit follows networks extracted from
Twitter and an undirected friendship network from Facebook, where we
can study the behavior of different algorithms under varied conditions in
terms of network properties such as density or clustering strength.

3

The core of our contribution is structured into four main blocks. A first
block describes and motivates the parallels between text IR and contact recom-
mendation, as well as shows the mappings between the two problems (Section
4). On top of this block, our specific contributions involve three main parts.
First, we adapt a large set of IR models into standalone contact recommenda-
tion methods (Section 5). Second, we integrate the adapted IR models to play
the role of similarity functions in kNN schemes (Section 7).Finally, we integrate
the models as features in a learning to rank approach (Section 8). Each of
these three parts includes its own block of experiments (Sections 6.4, 7.3, 8.3)
– using the same social network datasets and evaluation approach (introduced
in Section 6) – where the resulting methods are tested and their effectiveness
is compared to that of state-of-the-art contact recommendation algorithms, as
well as to each other. By and large, the empirical results in the three blocks
show the achievement of an increasing longitudinal improvement in effective-
ness. Each of these blocks is to a fair degree self-contained, and the reader can
skip and/or jump to any of the parts while still being able to follow the paper’s
narrative.

2. Related Work

Before presenting our work, we provide a brief background of the different
related areas: contact recommendation and link prediction, the relation between
recommender systems and information retrieval, and learning to rank.

2.1. Contact Recommendation and Link Prediction

In the context of online social networks, social recommender systems [60]
exploit the structures and traces in online social platforms to provide better
recommendations to their users. As a particular case in this domain, contact
recommendation (a.k.a. people-to-people recommendation) aims at identifying
people in a social network that a given user would benefit from relating to
[54]. This problem differs from most classical recommendation domains, such
as movie, video and music streaming, or e-commerce recommendation, in the
fact that users and items do not belong to different spaces: they live in the same
one, and the candidate items are simply other users in the platform.

Contact recommendation functionalities have been present in the most pop-
ular social platforms since the beginning of the previous decade, with systems
like Facebook or LinkedIn’s ‘People You May Know’ [31] or Twitter’s ‘Who To
Follow’ [23, 26] functionalities. These services have been proven valuable for
the growth and evolution of online social networks: for instance, in 2015, it
was estimated that nearly one eighth of the new links in Twitter were created
through their recommendation service [23].

The problem of recommending people to people in these environments has its
foundation in a network science problem known as link prediction [35, 38]. Link
prediction aims to accurately identify unobserved links that exist or will exist
in the future in a network. The differences between both tasks are subtle. First,

4

the domain of application of link prediction techniques is wider: these methods
can apply to different network domains beyond social network platforms, such
as citation networks [44], biological networks [17, 36], and many more, like, for
example networks that represent flying routes between airports or high voltage
lines between electrical generators and transformers [36]. The second difference
consists in how the predicted links are ranked: in link prediction, all the possible
links (or, at least, a fraction of them [44]) are ranked depending on the estimated
probability of appearance in the network; however, in contact recommendation,
a ranking for each different user in the network is created.

Link prediction and recommendation is an established topic at the confluence
of social network analysis and recommender systems for which many methods
have been proposed in the literature, based on the network topology [35], ran-
dom walks across the network graph [9, 23, 26], user-generated content [28] or
side-information such as location [63].

2.2. Relation between IR and Recommendation

The connections between recommendation and textual IR date back to the
earliest recommender systems and their relation to the information filtering
task [12]. Even though most of this connection has focused on content-based
methods [2], it has also developed into collaborative filtering algorithms [13, 47,
61, 62, 64, 65].

A particularly representative and relevant approach for our work was devel-
oped by Belloǵın et al. [13], allowing the adaptation of any IR term weighting
scheme to create a collaborative filtering algorithm. To this end, the approach
represents users and items in a common space, where users are the equivalent of
queries, and items play the role of the documents to be retrieved. They proposed
two different approaches. In the first one, both users and items are represented
in the user space. Each item is represented by its ratings (the users who rated
the item) and users are represented by their similarities to other users. In the
second one, users and items are represented in the item space: users are repre-
sented by their ratings, and items are represented by their similarities. Earlier
on, Wang et al. [64, 65], and later Parapar et al. [47], explored similar devel-
opments upon different – more specific – IR-inspired probabilistic models. Our
work pursues a similar goal to this research direction, but taking a step further:
if Belloǵın et al., Wang et al. and Parapar et al. folded three spaces (terms,
documents, queries) into two (users, items), we fold them into just one, as we
later explain in Section 4.

Another relevant study for our work is the proposal by Valcarce et al. [62],
who explored the use of query likelihood models [48] with different smoothing
techniques as similarities for neighborhood-based collaborative filtering recom-
mendations. They tested their approach in datasets from different domains and
found that, indeed, using those similarities instead of others like cosine similar-
ity improves both the accuracy and the diversity of the recommendations. In
this paper, we adapt this work to the task of recommending people-to-people,
and expand it by testing the effectiveness of multiple IR weighting schemes as
similarities for both user-based and item-based neighborhood-based approaches.

5

Finally, there are already some established connections between the link pre-
diction and contact recommendation tasks and and that of textual information
retrieval. For example, some link prediction approaches like the Jaccard index
[32, 35, 52] or cosine similarity [38, 52] have their roots in IR. More recently,
Hannon et al. [28] adapted the vector space model [53] to recommend users
on Twitter, based on both content-based and collaborative filtering algorithms.
Our work seeks to extend, generalize and systematize this point of view to adapt
any state-of-the-art IR model to contact recommendation.

2.3. Learning to rank

Learning to rank has become very popular in IR as a means to combine
different sources of evidence as features within a learned model, appropriately
weighted in a discriminative manner. In doing so, learning to rank aims to min-
imise a loss function that measures the error in producing an effective ranking,
compared to the ground truth relevance judgments (labels) of a set of training
documents for various queries.

Differently from regression or classification machine learning, learning to
rank is characterized by the desire not to most accurately estimate the labels
of the training data (as might be performed by a classifier or a regression), but
instead to get the relative ordering of documents with the highest predicted
labels at the top of the ranking. This matches better with the user expectations
in getting the most relevant documents at the top of the ranking, as rewarded
by classical IR evaluation metrics such as MAP, MRR (for binary labels), nDCG
and ERR (for multi-graded relevance labels).

To this end, going beyond the traditional pointwise evaluation loss functions
that represent classification and regression models, Liu [37] identified that pair-
wise loss functions (which consider the partial ordering of pairs of documents
based on their labels), and listwise loss functions (which consider the overall
ranking, usually based on a classical IR evaluation measure such as MAP and
nDCG) were more effective.

In this work, we apply the LambdaMART [15, 67] learning to rank technique
to contact recommendation. LambdaMART is characterized by the training of
gradient boosted regression trees using a combination of pointwise loss with a
listwise component that measures the improvement (or degradation) in a stan-
dard IR evaluation metric (typically nDCG) in changing the scores of pairs of
documents of different labels. In this way, LambdaMART is a hybrid learning-
to-rank technique, combining the infinitely flexible regression trees with listwise
evaluation measures.

We now discuss the families of features typically deployed in a learning to
rank scenario. While defined for each document, these families of features differ
in terms of their dependence on the query and the document:

• Query dependent: These features differ for each document and for each
query – typically, these might involve the score for a ranking model such
as BM25 computed for the current query on the document’s contents, or
the application of BM25 on the title of a document.

6

?

U
se

rs

𝒇𝒖ሺ𝒗ሻ

0.9

0.8

0.6

Adjacency Matrix

Social Network

Figure 1: The contact recommendation task.

• Query independent: Such features vary between documents, but have the
same value for each document, regardless of the query. Examples might
be the PageRank of a web document, the length of a document, or its
spamminess.

• Query features: These are independent of the document, in as much as
each document for a given query carries the same value for a given query
feature. Examples include query length, query performance predictors,
or the query type detection (e.g. presence of entities, navigational vs.
informational query).

In this work, we focus upon query dependent features within the context of
contact recommendation. In Section 3, we define the task, while in Section 4 and
5 we discuss the adaptation of IR models to the task of contact recommendation.
Later Section 8 particularly focuses on the application of learning to rank to
the task of contact recommendation.

3. Preliminaries

We start by formally stating the contact recommendation task, and intro-
ducing the notations we use in the remainder of the article. We represent the
structure of a social network as a graph G = 〈U , E〉, where U is the set of network
users, and E ∈ U2

∗ is the set of relations between users (friendship, interactions,
or whatever the network is representing), where U2

∗ = {(u, v) ∈ U2|u 6= v} is the
set of pairs formed by different users.

For each user u ∈ U , we denote their neighborhood as Γ(u) (the set of users
that u has established relations with). In directed networks, three different
neighborhoods can be considered, depending on which orientation we choose
for selecting the neighbors: the incoming neighborhood Γin(u) (users who cre-
ate links towards u), the outgoing neighborhood Γout(u) (users towards whom
u creates links), and the union of both neighborhoods Γund(u). In weighted
graphs, we have additionally a weight function w : U2

∗ → R, which returns the

7

Retrieved result

Query Document

Term

?

Target
user

Candidate
item

Neighbor
user

Recommended item

Recommended user

Target
user

Candidate
user

Neighbor
user

(a) Three spaces in text
retrieval (tripartite graph)

(b) Two spaces in item recom-
mendation (bipartite graph)

(c) Single space in contact rec-
ommendation (unipartite graph)

Figure 2: Textual IR elements (a) vs. item recommendation elements (b) vs. contact recom-
mendation elements (c).

weight of an edge if (u, v) ∈ E, and 0 otherwise. In unweighted graphs, we can
consider that w(u, v) = 1 if the link exists, and 0 otherwise.

Next, given a target user u, the contact recommendation task consists in
finding a subset of users Γ̂out(u) ⊂ U \Γout(u) towards whom u has no links but
who might be of interest to the target user. We address the recommendation
task as a ranking problem, in which we find a fixed number of users n = |Γ̂out(u)|
sorted by decreasing value of a ranking function fu : U \Γout(u)→ R. Figure 1
illustrates the contact recommendation task thus viewed under the perspective
of a conventional recommendation task.

4. IR Model Adaptation Framework for Contact Recommendation

Even though recommendation and text retrieval have been traditionally ad-
dressed as separate problems, it is possible to establish analogies and equiva-
lences between both tasks. Recommender systems are indeed often described
as retrieval systems where the query is absent, with the records of user activity
being available instead [13]. The approaches we develop follow this perspective.

In order to adapt textual IR models to the recommendation task, we need
to establish equivalences between the elements in the contact recommendation
task (users and interactions between them) and the spaces involved in text
search (queries, documents and terms). In previous adaptations of IR models
for recommendation, the three IR spaces commonly folded into two: the set of
users and the set of items [13]. However, when we seek to recommend people in
social networks, the latter two spaces are the same. Therefore, to adapt the IR
models to our task, we fold the three IR spaces into a single dimension: the set
of users in the social network, playing three different roles, as we illustrate in
Figure 2. Next, we explain in more detail how we carry this mapping through.

First, the natural equivalent of documents in the search space are candidate
users (to be recommended as contacts), as they play the same role: they are
the elements to be retrieved in order to fulfil a user need. The information need
is explicit in the search task, expressed by a query. However, it is implicit in

8

IR engine

Network
𝒢 𝒰, 𝐸

User 𝑢

IR system

Adjacency

matrix

Inverted
index

User
profile

Γ(𝑢)

Recommendation

0.8

0.5

𝑓𝑢(𝑣)

Figure 3: Adaptation of IR models to recommend users in social networks.

contact recommendation: the need for creating new bonds. This social need is
to be predicted based on records of past user activity, which therefore play an
equivalent role to the query keywords in textual IR. In a social network, past
user activity is encoded into existing links to and/or from the target user.

Finally, we need an equivalent to the term representation of documents. In
prior adaptations of IR models for recommendation, this was the main difficulty:
users and items were different objects, so a representation that suits one might
not work for the other [13]. In contact recommendation this becomes in fact
easier: users and items are the same thing, so any term representation for
target users is automatically valid for the “items” (the candidate users). The
possibilities for defining an equivalent to terms are manifold, and result in very
different algorithms. For instance we can define content-based recommendation
methods by using texts associated to users, such as messages or documents
posted (or liked) by the users [28]. On the other hand, if we take users as
the term space, and we equate the term-document relationship to interactions
between users, we obtain collaborative filtering algorithms. In this article, we
focus on the latter approach.

Figure 3 illustrates our proposed collaborative filtering adaptation frame-
work. A social network is encoded as a weighted adjacency matrix A, where
Auv = w(u, v). Using link data, we build two elements: on one hand, an inverted
index that allows for the fast retrieval of candidate users and, on the other, a
structure that provides direct access to the neighborhood of the target users,
i.e. the query term representation. The inverted index uses network users as
keys (playing the role of terms), and the postings lists store the set of candidate
users to whose neighborhood representation (as “documents”) the “key” users
belong to.

Using this index and the “query” structure, any textual IR system can be
used as a contact recommendation algorithm. Those new algorithms are part
of a family of methods known as “friends of friends”, which recommend people

9

(a) Incoming
neighborhood Γin

(b) Outgoing
neighborhood Γout

(c) Undirected
neighborhood Γund

Figure 4: Possible neighborhood orientations.

with whom their neighbors have a relation. In addition to our IR approaches,
this family includes some link prediction approaches like Adamic-Adar [1, 35],
Jaccard similarity [32, 35] or simply recommending users by the greatest number
of common neighbors between the candidate and the target user [35]. Additional
details and options remain open however when developing a specific instance
of this framework in full detail, as we describe in the following sections. An
important aspect concerns the direction of social links in the re-interpretation
of IR models, to which we pay specific attention.

In directed social networks such as Twitter or Instagram, three definitions
of user neighborhood can be considered, as illustrated in Figure 4: the incoming
neighborhood Γin(u), the outgoing neighborhood Γout(u) and the union of both,
Γund(u) = Γin(u)∪Γout(u). Any of the three options is valid in our adaptation of
IR models. Since the inverted index and user profiles are created independently,
it is even possible to take a different choice for target and candidate users: since
we still use the same elements to represent (the equivalent of) both queries and
documents, it is possible to work just smoothly with different neighborhood
orientation choices for user targets and candidates [56].

5. Adaptation of Specific IR Models

As examples of the general unification framework we proposed in the pre-
vious section, we show in some detail the adaptation of the IR models we use
in our experiments . We divide the IR models in several categories, according
to the typical classification in IR: probability ranking principle models [49, 50],
language models [48], divergence from randomness models [4, 8] and the vector
space model [53]. In the formulations presented in this section, we denote the
neighborhood representation of the target user as Γq(u) and the neighborhood
representation of candidate users as Γd(v). Table 1 provides a summary of the
notations used in the remainder of this article, as well as the relation between
the IR and the contact recommendation elements. Further details about the
notations included in the table are provided in this section. In addition, Table 2
summarizes the resulting formulations of the IR models for content recommen-
dation.

10

Table 1: Relation between the IR and contact recommendation elements.

Information retrieval Contact recommendation

Document collection, D Set of users, U
Query, q Target user’s neighborhood, Γq(u)
Document, d Candidate user’s neighborhood, Γd(u)
Term t ∈ q/d Neighbor user, t ∈ Γq(u)/Γd(v)
Documents containing a term, Dt User’s inverse neighborhood, Γd

inv(t)
Frequency of a term, freq(t, d) Weight of a link, wd(v, t)

Document length, |d′| Length of the user, lenl(v)

5.1. Probability Ranking Principle (PRP) Models

The probability ranking principle introduced by Robertson [49] establishes
that, given a query, ranking documents according to their probability of rele-
vance maximizes the expected effectiveness of the returned results. We study
two models, namely BIR and BM25 [50] and propose a new one, Extreme BM25,
based on the second model.

5.1.1. Binary Independence Retrieval (BIR)

The model known as BIR (binary independence retrieval) [50] is the simplest
representative of IR models building on the probability ranking principle [49].
Under the assumption that term occurrence follows a (multiple) Bernoulli dis-
tribution, this model estimates the probability of relevance of a document d for
a query q as:

P (r|d, q) ∝
∑
t∈d∩q

RSJ(t) (1)

where r denotes the event that the document is relevant, and RSJ is defined as
follows [50]:

RSJ(t) = log
|Rt|(|D| − |Dt| − |R| − |Rt|)

(|R| − |Rt|)(|D| − |Dt|)
(2)

In the above equation R is the set of relevant documents for the query, Rt
is the set of relevant documents containing the term t, D is the document
collection, and Dt is the set of documents containing t. Since the set R of
relevant documents is not known, the following approximation can be taken,
considering that typically only a tiny fraction of documents are relevant:

RSJ(t) = log
|D| − |Dt|+ 0.5

|Dt|+ 0.5
(3)

As described in Section 4, to adapt this model for contact recommendation,
we equate queries and documents to target and candidate users, respectively.
We also equate the term-document relationship to social network edges. Under
this equivalence, |D| is the number of users in the network, and |Dt| is the
number of users that t is a neighbor of (i.e. their neighbor size in the transposed

11

network). Denoting inverse neighborhoods as Γdinv(t), the adapted BIR equation
becomes as follows:

fu(v) =
∑

t∈Γq(u)∩Γd(v)

RSJ(w) =
∑

t∈Γq(u)∩Γd(v)

log
|U| − |Γdinv(t)|+ 0.5

|Γdinv|+ 0.5
(4)

5.1.2. BM25

BM25 is one of the best-known and most effective probabilistic IR mod-
els [50]. It starts from similar principles to BIR, but modeling term occurrence
in documents as a Poisson instead of a Bernoulli distribution. The resulting
ranking function is defined as:

P (r|d, q) ∝
∑
t∈d∩q

(k + 1)freq(t, d)

k
(

1− b+ b |d|
avgd′∈D |d′|

)
+ freq(t, d)

RSJ(t) (5)

where freq(t, d) denotes the frequency of t in d,|d| is the document length,
RSJ(w) is defined in Equation (3), and k = [0,∞) and b ∈ [0, 1] are free param-
eters controlling the effect of term frequencies and the influence of the document
length, respectively.

The text retrieval space can be mapped into a social network just as before,
now taking, additionally, edge weights as the equivalent of term frequency. In
directed networks, we also need to make a choice between the weight of incoming
or outgoing links as the equivalent of frequency. We link this decision to the
edge orientation selected for candidate users (as pointed out earlier in Sections 4
and the beginning of Section 5), as follows:

freq(t, v) = wd(v, t) =

w(t, v) if Γd := Γin

w(v, t) if Γd := Γout

w(t, v) + w(v, t) otherwise

(6)

Finally, document length can be now defined as the sum of edge weights
of the candidate user. In unweighted graphs, this is simply equivalent to the
degree of the node. On the other hand, in directed networks, we have again
different choices. The BM25 formulation for text retrieval considers different
options in defining document length (number of unique terms, sum of frequen-
cies, etc.) [50]. We find similarly worthwhile to decouple the orientation choice
for document length from the one for the term representation of candidate users.
We reflect this by defining length as follows:

lenl(v) =
∑

t∈Γl(v)

wl(v, t) (7)

where Γl(v) represents the candidate’s neighborhood in a specific orientation
choice for document length. Based on this, the adaptation of BM25 becomes:

fu(v) =
∑

t∈Γq(u)∩Γd(v)

(k + 1)wd(v, t)

k

(
1− b+ b lenl

(v)

avgx∈U lenl
(x)

)
+ wd(v, t)

RSJ(t) (8)

12

5.1.3. Extreme BM25

In addition to the previous probabilistic models, we introduce a new one,
which we denote by Extreme BM25. This algorithm is defined as the BM25
algorithm when the parameter k tends to ∞. Its equation is the following:

fu(v) =
∑

t∈Γq(u)∩Γd(v)

wd(v, t)

1− b+ b lenl
(v)

avgx∈U lenl
(x)

RSJ(t) (9)

The main difference between BM25 and Extreme BM25 is the removal of the
smoothing of the numerator.

5.2. Language Models

Another family of probabilistic IR approaches is the family of language mod-
els. A language model is a probability distribution over linguistic units, such as
words, sentences or whole documents. In these models, a document is relevant
to a query if the document model is likely to generate the query. One of the
most widely used and successful language modelling approaches to IR is the
so-called query likelihood (QL) model [48]:

fq(d) = p(q|d) ∝
∑
t∈q

freq(t, q) log2(p(t|d)) (10)

In the contact recommendation task, this model translates to:

fu(v) = p(u|v) ∝
∑

t∈Γq(u)

wq(u, t) log2 p(t|v) (11)

where probability p(t|v) can be estimated by maximum likelihood with some
smoothing to avoid the whole score of a “document” user to vanish only because
a single “query” user neighbor does not appear in the document. We explore
three different smoothing techniques, which have been previously applied in
recommender systems [13, 61, 62]:

• The Jelinek-Mercer smoothing (QLJM): [33]

fu(v) =
∑

t∈Γq(u)

wq(u, t) log

(
(1− λ)

wd(v, t)

lend(v)
+ λ

lendinv(t)∑
x∈U lend(x)

)
(12)

• The Dirichlet smoothing (QLD) [42]:

fu(v) =
∑

t∈Γq(u)

wq(u, t) log

(
wd(v, t) + µ · lendinv(t)/

∑
x∈U lend(x)

lend(v) + µ

)
(13)

• The Laplace smoothing (QLL) [62]:

fu(v) =
∑

t∈Γq(u)

wq(u, t) log

(
wd(v, t) + γ

lend(v) + γ|U|

)
(14)

13

5.3. Divergence from Randomness (DFR) Models

The divergence from randomness (DFR) models are a family of probabilistic
IR models, based on the idea that, given a term t and a document d, the more
the distribution of the term in the document diverges from the distribution
of the term in the whole collection, the more informative the term is for that
document [4] . The DFR family of algorithms is very wide, and we focus here
on five popular DFR algorithms: PL2, DFRee, DFReeKLIM, DLH and DPH.
All these DFR models are available in the Terrier IR platform [39, 46].

5.3.1. PL2

PL2 [4, 8] is one of the best-known DFR models. This model is characterized
by three different elements. First, the divergence between the distribution of
the terms in each individual document and the collection is measured using a
Poisson distribution. Second, a Laplace aftereffect estimation is applied as a first
normalization of the model and, last, the term frequency is normalized using
the so-called Normalisation 2 [4, 8]. As a contact recommendation algorithm,
this leads to the following formulation:

fu(v) =
∑

t∈Γq(u)

wq(u, t)

ŵd(v, t) + 1

[
ŵd(v, t) log2

|U|ŵd(v, t)∑
x∈U w

d(x, t)
+

log2(2πŵd(v, t))

2

+

(∑
x∈U w

d(x, t)

|U|
+

1

12ŵd(v, t)
− ŵd(v, t)

)
log2 e

]
(15)

where ŵd(v, t) is the weight of the link after applying Normalisation 2:

ŵd(v, t) = wd(v, t) log2

(
1 + c ·

avgx∈U lend(x)

lend(v)

)
(16)

5.3.2. DFRee

DFRee stands for DFR free from parameters. Instead of using a probabil-
ity distribution to measure the divergence, this model applies concepts from
information theory [59]. Specifically, given a term in the query, this models
uses as measure of divergence the average number of extra bits, which would
be needed to code the document if we added an extra appearance of the term.
As there are two possible ways of sampling the distribution (considering only
the document or the complete collection), this method computes the average of
both information measures (i.e. their inner product). When adapted to contact
recommendation, the formulation for this model is the following:

fu(v) =
∑

t∈Γq(u)

[
wd(v, t) log

p̂(t, v)

p(t)
+ (wd(v, t) + 1) log2

p̂+(t, v)

p(t)
+

+
1

2
log

p̂+(t, v)

p̂(t, v)

]
wq(u, t)wd(v, t) log

p̂+(v, t)

p̂(v, t)

(17)

14

where

p(t) =

∑
x∈U w

d(x, t)∑
x∈U lend(x)

(18)

represents the prior probability of the term in the collection,

p̂(v, t) =
wd(v, t)

lend(v)
(19)

represents the relative frequency of the term in the “document” user and

p̂+(v, t) =
wd(v, t) + 1

lend(v) + 1
(20)

represents the relative frequency of the term (adding 1 to the value of the
weight).

5.3.3. DFReeKLIM

This DFR model has been specifically proposed for dealing with short docu-
ments such as tweets. Similarly to the DFRee weighting model, this parameter-
free DFR approach uses information theory concepts to compute the divergence
[7]. This model is computed as the inner product of two information mea-
sures: the additional cost, in bits, of coding the document this term belongs
to, when considering the probability p̂(v, t), and the cost of adding this term to
the document with respect to the optimal encoding of the document. Using the
definitions provided for DFRee, the mathematical formulation of the approach
is given as follows:

fu(v) = lend(v)
∑

t∈Γq(u)

wq(u, t)p̂(v, t)

[
log

p̂(v, t)

p(t)
log

p̂+(v, t)

p̂(v, t)

]
(21)

5.3.4. DPH and DLH

Both DLH [5] and DPH [6] are parameter-free DFR models that use a hy-
pergeometric distribution as the divergence measure. They differ in their nor-
malization scheme: whereas DLH uses Laplace normalization, DPH uses that of
Popper. The equations for those methods as recommendation approaches can
then be formulated as follows:

fu(v) =
∑

t∈Γq(u)

wq(u, t)
wd(v, t) log p̂(v,t)

p(t) + 0.5 log
(
2πwd(v, t)(1− p̂(v, t))

)
wd(v, t) + 1

(22)

15

where p(t) and p̂(v, t) are defined in Equations (18) and (19) for DLH and

fu(v) =
∑

t∈Γq(u)

(
1− wd(v, t)

lend(v)

)2
[
wd(v, t) log

(
wd(v, t)

∑
x∈U lend(x)

lend(v)

)
+

1

2
log
(
2πwd(v, t)

)(
1− wd(v, t)

lend(v)

)]
wq(u, t)

wd(v, t) + 1

(23)

for the DPH model.

5.4. Vector Space Model
In the vector space model (VSM) [53] documents and queries are represented

as |V|-dimensional vectors, where V represents the set of terms in the collection.
Using this model, the ranking function is often the cosine similarity of the
query and document vectors. In the case of contact recommendation, the cosine
similarity of the target and candidate user vectors can be formulated as follows:

fu(v) =
∑

t∈Γq(u)∩Γd(v)

utvt√∑
t∈Γd(v) v

2
t

(24)

where ut and vt represent the coordinates of the user vectors for term t. This is
defined as the product of two separate terms: the term frequency (tf), which is
a function of the number of appearances of the term in the document, and the
inverse document frequency (idf), which, similarly to RSJ in the BM25 model,
gives more value to discriminative terms. In this article, we use the following
simple and common tf-idf definition [10]:

ut = tf-idf(u, t) = (1 + log2 w
q(u, t)) · log2

(
1 +

|U|
1 + |Γqinv(t)|

)
(25)

vt = tf-idf(v, t) = (1 + log2 w
d(u, t)) · log2

(
1 +

|U|
1 + |Γdinv(t)|

)
(26)

where we add 1 to the denominators in the idf expressions to avoid division
by zero when a user has no neighbors (which might happen in partial directed
network samples, as opposed to text collections where all terms are supposed to
occur in at least one document).

6. Experiments with Standalone IR Models

In order to analyze the performance of our adaptation of the IR methods
to contact recommendation and compare them with baseline alternatives, we
conduct several offline experiments using social network data extracted from
Twitter and Facebook. In the following, we describe the data, as well as our
experimental approach and setup.1

1All the source code used in the experiments reported here is available at
https://github.com/ir-uam/IR-models-4-contact-recommendation.

16

Table 2: Adaptation of IR models for recommendation

Probability Ranking Principle (PRP)

Algorithm Equation fu(v)

BIR
∑

t∈Γq(u)∩Γd(v)

log
|U| − |Γd

inv(t)|+ 0.5

|Γd
inv|+ 0.5

BM25
∑

t∈Γq(u)∩Γd(v)

(k + 1)wd(v, t)RSJ(t)

k
(
1− b+ b

(
lenl(v)/ avgx lenl(x)

))
+ wd(v, t)

Extreme BM25
∑

t∈Γq(u)∩Γd(v)

wd(v, t)

1− b+ b
(
lenl(v)/ avgx lenl(x)

)RSJ(t)

Language models – Query likelihood (QL)

Algorithm Equation fu(v)

QLD
∑

t∈Γq(v)

w
q
(u, t) log

(
(1− λ)

wd(v, t)

lend(v)
+ λ

lend
inv(t)∑

x∈U lend(x)

)

QLJM
∑

t∈Γq(v)

w
q
(u, t) log

(
(1− λ)

wd(v, t)

lend(v)
+ λ

lend
inv(t)∑

x∈U lend(x)

)

QLL
∑

t∈Γq(u)

w
q
(u, t) log

(
wd(v, t) + γ

lend(v) + γ|U|

)

Divergence from Randomness (DFR)

Algorithm Equation fu(v)

PL2

∑
t∈Γq(u)

wq(u, t)

ŵd(v, t) + 1

[
ŵ

d
(v, t) log2

(
|U|ŵd(v, t)∑
x∈U w

d(x, t)

)
+

log2(2πŵd(v, t))

2

+

(∑
x∈U w

d(x, t)

|U|
+

1

12ŵd(v, t)
− ŵd

(v, t)

)
log2 e

]

DFRee

∑
t∈Γq(u)

w
q
(u, t)w

d
(v, t) log

p̂+(v, t)

p̂(v, t)

[
w

d
(v, t) log

p̂(t, v)

p(t)
+

+(w
d
(v, t) + 1) log2

p̂+(t, v)

p(t)
+ +

1

2
log

p̂+(t, v)

p̂(t, v)

]

DFReeKLIM
∑

t∈Γq(u)

w
q
(u, t)p̂(v, t)

[
log

p̂(v, t)

p(t)
log

p̂+(v, t)

p̂(v, t)

]
len

d
(v)

DLH
∑

t∈Γq(u)

w
q
(v, t)

wd(v, t) log
p̂(v,t)
p(t)

+ 0.5 log
(

2πwd(v, t)(1− p̂(v, t))
)

wd(v, t) + 1

DPH

∑
t∈Γq(u)

(
1−

wd(v, t)

lend(v)

)2 [
w

d
(v, t) log

(
wd(v, t)

∑
x∈U lend(x)

lend(v)

)
+

1

2
log
(

2πw
d
(v, t)

)(
1−

wd(v, t)

lend(v)

)]
wq(u, t)

wd(v, t) + 1

Vector Space Model (VSM)

Algorithm Equation fu(v)

VSM

∑
t∈Γq(u)∩Γd(v)

utvt√∑
t∈Γd(u)

v2
t

17

Input Test judgments

Training Validation

Evaluation

Parameter tuning / training

All links

Figure 5: The random and temporal network partitioning approaches.

6.1. Data

We run our experiments over graphs collected from two of the largest social
networking sites: Facebook and Twitter. The Facebook data was taken from
the Stanford Large Network Dataset collection2. In particular, we use the ego-
Facebook dataset, formed by gathering all the edges between the friends of ten
users. This network has 4,039 users and 88,234 edges in total [43].

For our Twitter data, we use two types of networks: dynamic, implicit net-
works, induced by the interactions between users (i.e. (u, v) ∈ E if u retweeted or
mentioned v) and explicit networks, formed by static follow links (i.e. (u, v) ∈ E
if u follows v). To collect these graphs, we first sample the implicit networks
using a snowball crawling approach [24]: we start with a single seed user, and
we take the interaction tweets (retweets and mentions) by each user as outgo-
ing network edges to be traversed. User sampling stops when 10,000 users are
reached in the traversal; at that point, any outgoing edges from the remaining
users in the crawl frontier pointing to the sampled users are added to the net-
work. For the follows graph, we take the collected users and retrieve all the
follow relationships between them.

Using the previous procedure, we built two different datasets: one containing
all tweets posted by a set of around 10,000 users from June 19th to July 19th

2015, and one containing the last 200 tweets (the maximum number of tweets
that can be collected in a single Twitter API call) posted by 10,000 users as
of August 2nd 2015. We denote the first dataset as “1 month” whereas the
second is denoted as “200 tweets”. Parts of those datasets were previously used
in several works [54, 55, 56, 57].

6.2. Experimental Procedure

For training and evaluation purposes, given a network dataset (or data
source), we handle three subnetworks, that is, three disjoint sets of edges: train-
ing, validation and test, which can be obtained in different manners. In all
cases, the hyperparameters (IR model parameters, neighborhood orientation,
etc.) are tuned using the training set as input, and the validation set as rele-
vance judgments. After this, the union of the training and validation sets – to
which we shall henceforth refer to as the input network – is supplied as input

2https://snap.stanford.edu/data (Accessed July 18 2019)

18

time

𝑠1 𝑠2 𝑠3

Network snapshots

Se
ts

 o
f n

et
w

or
k

ed
ge

s Sub-network selection from network snapshots:
1. Parameter tuning / training phase

• Training set (input): s1
• Validation set (judgments): s2 \ s1

2. Evaluation phase
• Input set: s2
• Test set (judgments): s3 \ (s1 ∪ s2)

Figure 6: The snapshot-based network partitioning approach. The procedure is based on
network growth over time, but also considers that some edges may disappear (i.e. we do not
necessarily have s1 ⊂ s2 ⊂ s3).

Table 3: Dataset statistics. The clustering coefficient is computed over the union of all edge
sets for each network, and ignoring the edge direction.

Twitter 1-month Twitter 200-tweets Facebook

Interactions Follows Interactions Follows

Directed Yes Yes Yes Yes No
Clustering coefficient 0.065 0.116 0.050 0.123 0.519
Users 9, 528 9, 770 9, 985 9, 964 4, 039
Training edges 116, 332 630, 504 104, 866 427, 568 56, 466
Validation edges 33, 867 46, 628 29, 131 46, 760 14, 100
Input edges 170, 425 645, 022 137, 850 475, 730 70, 566
Test edges 54, 335 81, 110 21, 598 98, 519 17, 643

to the recommendation algorithms, and the test graph is held out from the al-
gorithms for their evaluation. IR metrics such as precision, recall or nDCG [10]
can be computed on the output of a recommendation algorithm by considering
the test edges as binary relevance judgments: a user v is relevant to a user u if
– and only if – the edge (u, v) appears in the test graph.

We use three different approaches to obtain these three sets: random split,
temporal split, and temporal snapshots.

• Random split: We start from a single given network (a dataset), and we
simply split the set of edges into three disjoint sets uniformly at random
based on the desired split ratios.

• Temporal split: We divide the network into the desired ratios, ensuring
that the timestamps of the training set precede the validation set, and
that the latter also precedes the test set. If any edges appear in more
than one subset (e.g. when two users interact repeatedly at different times
across a split point), they are removed from the most recent ones, to avoid
“test contamination” with training data.

19

• Temporal snapshots: We take three snapshots at three consecutive time
points. The first snapshot is taken as the training graph; the new links in
the second snapshot (i.e. the second snapshot minus the first) are used as
the validation set; and the new edges in the third download (i.e. the third
download minus the second and the first) are used as the test data.

The random and temporal splits are illustrated in Figure 5, while the tempo-
ral snapshots are illustrated in Figure 6. We now explain what data partitioning
approach we apply on each of the specific datasets we use in our experiments.
Table 3 summarizes the statistics and properties of the different datasets and
the resulting subgraphs.

For the Facebook network, since we do not have temporal information, we
split the graphs randomly: we take 60% of the links as training, 20% for vali-
dation, and 20% in the test set.

In our Twitter interaction networks, we apply a temporal split, which better
represents a real setting. In these graphs, the frequency of training interaction
between every pair of users is available to the evaluated systems as part of
the training information. The split points for the 1-month dataset are July
5th 0:00:00 GMT and July 12th 2015 0:00:00 GMT, thus taking two weeks
for training, one week for validation, and one week for testing. In the 200-
tweets dataset, the split dates are July 24th 17:15:26 GMT and July 29th 2015
1:08:07 GMT chosen to have 60%, 20% and 20% of interactions in the training,
validation and test graph, respectively. After removing repeated edges crossing
the network partition, the final size of the validation and test subsets may
slightly decrease from the initial split ratio – in our case the difference, when
any, is quite minor, as can be verified in Table 3.

For the follows networks, since Twitter does not provide information about
the times when links were created, we apply the snapshot approach: we down-
load the links between the users in the dataset three times. For the 1-month
dataset, the first download of the follows graph contains the links created in
the network before October 9th 2015, and for 200-tweets, the connections be-
tween users as of October 20th 2015. For both datasets, the second snapshot
is taken four months after the first one, and the third snapshot two years after
the second.

Note that given the way our experiments are designed, the task of the eval-
uated systems is, in a strict sense, to predict what the users will do next (follow
or interact with other people). Inasmuch as the observed user’s own actions can
be assumed to be useful for them, these experiments provide a fair proxy for
evaluating how useful the recommendations could be if they were delivered as
suggestions to the users, which is a common perspective in evaluation practice
in the field [25, 54].

6.3. Recommendation Algorithms

We assess the proposed IR model adaptations by comparing them to a se-
lection of the most effective and representative algorithms in the link prediction
and contact recommendation literature. Our selection includes Adamic-Adar

20

[1], most common neighbors (MCN) [35], Jaccard [32, 35], cosine similarity [38],
personalized PageRank [66], and collaborative filtering – item-based and user-
based kNN with cosine similarity) [45] and implicit matrix factorization (iMF)
[30], as implemented in the RankSys library3. In addition, we implement the
Money algorithm [23, 26] developed at Twitter, in which, for simplicity, we in-
clude all users in the circle of trust. We also include a random and most-popular
recommendation as sanity-check baselines.

Using the different previously explained data partitions, we optimize the
hyperparameters of all the algorithms (both edge orientation and parameter
settings) by grid search targeting nDCG@10. The detailed parameter grid is
shown in Table A.1 in the additional material. For those that can take advantage
of edge weights (i.e. the adapted IR models and link prediction algorithms), we
select the best option. The resulting optimal settings are detailed in Table A.2
in the supplementary material. The configuration of the algorithms includes
setting the edge direction where applicable. We have already explored such
setting in some detail in prior work [56].

To avoid trivializing the recommendation task on directed networks, recip-
rocating links are excluded from both the test network and the systems’ output.
Given the high reciprocation ratio on Twitter, recommending reciprocal links
would be a trivial, hard-to-beat baseline. Moreover, users do already notice
when another user retweets or mentions them since Twitter systematically sends
notifications, thereby an additional recommendation would be redundant and
would barely add any value for users.

6.4. General Results

In our experiments, we measure the behaviour of the IR models described in
Section 5 in relation to the rest of the algorithms, in terms of nDCG and MAP
at cutoff 10. The results of this comparison are shown in Table 4. We examine
the statistical significance of the comparisons between algorithms using the two-
tailed paired t-tests at p < 0.05. Furthermore, we complement this statistical
significance analysis with additional Tukey Honest Significant Difference (HSD)
tests at p < 0.05 to account for multiple comparisons, as suggested in the liter-
ature [18, 51]. The outcome of all these statistical significance tests is reported
in full detail in Section B in the supplementary material. We observe that, in
general, as expected, the Tukey HSD test is more conservative – increasingly
so when we compare higher numbers of systems. However, both tests broadly
agree on the most important conclusions. Through the rest of the paper, when
making observations about statistical significance, we do them using both tests
unless otherwise specified.

A first observation in our results shows that the IR models are, indeed, quite
effective for our task since, in every dataset, at least one of them appears among
the top 5 algorithms in the comparison, in terms of both metrics. Among the

3http://ranksys.org (Last accessed April 23rd 2020)

21

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf
http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

Table 4: Effectiveness of the IR model adaptations and baselines. A cell color goes from red
(lower) to blue (higher values) for each metric/dataset, with the top value both underlined and
highlighted in bold. The differences between BM25 (the best IR model) and iMF (the best
baseline) are always statistically significant by a two-tailed paired t-test at p < 0.05, except
MAP@10 in the 200-tweets interactions network. A more conservative Tukey HSD test also
finds that all the differences between BM25 and iMF are statistically significant except those
for both MAP@10 and nDCG@10 on the 200-tweets interactions network. Full statistical
significance tests are reported in Figures B.1 to B.3 in the supplementary material.

Algorithm nDCG MAP nDCG MAP nDCG MAP nDCG MAP nDCG MAP
BM25 0.1042 0.0440 0.1177 0.0479 0.1097 0.0583 0.1159 0.0405 0.5731 0.3686
BIR 0.0983 0.0399 0.1173 0.0475 0.1004 0.0522 0.1140 0.0389 0.5720 0.3670
PL2 0.0962 0.0390 0.1184 0.0467 0.0983 0.0507 0.1166 0.0405 0.5712 0.3670
DFRee 0.0849 0.0335 0.1112 0.0424 0.0976 0.0511 0.1164 0.0408 0.5601 0.3548
Extreme BM25 0.0848 0.0326 0.1167 0.0472 0.1034 0.0543 0.1132 0.0390 0.5519 0.3480
QLD 0.0767 0.0311 0.0985 0.0370 0.0937 0.0500 0.1152 0.0411 0.5799 0.3732
QLJM 0.0882 0.0350 0.1154 0.0456 0.0694 0.0373 0.1161 0.0412 0.5664 0.3616
QLL 0.0855 0.0338 0.1098 0.0410 0.0939 0.0497 0.1160 0.0399 0.5599 0.3564
DPH 0.0806 0.0317 0.1063 0.0399 0.0976 0.0514 0.1159 0.0409 0.5568 0.3514
DFReeKLIM 0.0709 0.0273 0.0927 0.0336 0.0953 0.0506 0.1138 0.0402 0.5565 0.3519
DLH 0.0643 0.0246 0.0901 0.0325 0.0901 0.0480 0.1122 0.0396 0.5566 0.3526
VSM 0.0292 0.0121 0.0503 0.0174 0.0425 0.0223 0.0787 0.0275 0.5237 0.3224
iMF 0.1388 0.0663 0.1462 0.0590 0.1035 0.0558 0.1329 0.0465 0.5210 0.3207
User-based kNN 0.1367 0.0669 0.1413 0.0594 0.0954 0.0510 0.1297 0.0462 0.5457 0.3491
Item-based kNN 0.1174 0.0533 0.1296 0.0529 0.0724 0.0389 0.1205 0.0413 0.4542 0.2650
Money 0.1315 0.0638 0.1129 0.0465 0.0932 0.0492 0.1131 0.0401 0.5867 0.3809
Adamic-Adar 0.0981 0.0398 0.1175 0.0467 0.0997 0.0513 0.1140 0.0388 0.5746 0.3695
MCN 0.0918 0.0368 0.1189 0.0467 0.0948 0.0493 0.1110 0.0373 0.5585 0.3546
Pers. PageRank 0.0800 0.0315 0.0965 0.0362 0.0630 0.0317 0.0843 0.0276 0.5891 0.3826
Jaccard 0.0317 0.0117 0.0543 0.0176 0.0571 0.0307 0.0848 0.0287 0.4913 0.2967
Cosine 0.0393 0.0186 0.0497 0.0168 0.0480 0.0243 0.0768 0.0265 0.4943 0.2981
Popularity 0.0572 0.0291 0.0449 0.0161 0.0422 0.0212 0.0397 0.0098 0.0523 0.0234
Random 0.0014 0.0005 0.0011 0.0002 0.0003 0.0001 0.0018 0.0003 0.0030 0.0009

Facebook
Interactions Follows

200-tweets
Interactions Follows

1-month

different models, two of them stand out above the rest in terms of accuracy and
robustness across the different datasets, namely BM25 and PL2.

Indeed, BM25 is always among the top 6 algorithms in our comparison in
terms of both nDCG and MAP, even achieving the top accuracy for the in-
teraction network in the 200-tweets dataset. The only exception is the follows
network for that same dataset, although the difference with the 4th algorithm
in the comparison, PL2, is not statistically significant in this network (see Fig-
ure B.3 for statistical significance detail in the supplementary material). One of
the reasons for such a performance is likely the ability of BM25 to take advan-
tage of interaction frequency (edge weights) better than any other algorithm –
in fact, all other algorithms except VSM and cosine similarity, produce worse
results when using a non-binary edge representation.

22

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf
http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

The second model, PL2, is the other consistent algorithm in the compar-
ison, always among the top 7 best approaches. To a lesser extent, BIR also
provides good results in our comparison. On the contrary, the vector space
model achieves the worst values for an IR model in our experiments, close to
the popularity-based recommendation. The rest of the IR algorithms usually
stand as mid-packers in the different used datasets.

Classical collaborative filtering algorithms are a hard baseline to beat in the
Twitter networks, especially in the case of the implicit matrix factorization al-
gorithm, which achieves top values of nDCG for three of the Twitter datasets,
and second-to-best in the remaining one. This is also true for MAP@10, where
the algorithm is second to best in the interaction networks and the follows net-
work for the 1-month dataset, whereas it is the best in the 200-tweets follows
network. However, on the Facebook network, the algorithm is far from optimal,
even achieving a worse performance than the vector space model. This shows
that the algorithm iMF is unable to capture the undirected nature of the net-
work when generating the recommendations as effectively as it does in directed
networks. Almost the same can be stated for the user-based kNN approach,
which obtains top performance values in the 1-month dataset, and stands out
in the 200-tweets follows network. However, its performance decays in the in-
teraction network of 200-tweets, and the Facebook network.

For the rest of algorithms, MCN, Adamic-Adar and item-based collaborative
filtering behave as mid-packers in the different datasets. Jaccard and cosine
similarity perform rather poorly in comparison, similarly to the vector space
model. These three models are the ones that penalize the popularity of the
candidate users the most, thus showing that in general, avoiding popularity
bias of the recommenders in recommendations does not allow us to get lead to
good results. We can relate this to the so-called preferential attachment effect
in social networks [11], in which users with a high degree are more likely to be
contacted by other users than users with low degree.

Finally, the random walk algorithms show very different behaviors depending
on the graph. They achieve the best results for the Facebook graph, but they
are suboptimal in the directed networks. In those networks, Money works better
than personalized PageRank, especially in the 1-month dataset.

Overall, we find that information retrieval models, and, particularly, BM25
and PL2 make for highly competitive contact recommendation approaches in
different types of networks. BM25 is however not the top algorithm, since
iMF overall has a slight advantage in effectiveness. Based on our own previous
experience with iMF in different domains, we note that iMF works particularly
well under higher data density, which may explain its advantage over the IR
models in the follows graphs – as well as its better performance in the 1-month
vs. 200-tweets interaction networks. On the other hand, iMF seems fragile
and sensitive to high network clustering degrees, as is the case in the Facebook
dataset, where iMF performs rather poorly: as we see later in Table 5, over 99%
of the test edges are only at distance 2 of the target user in this network (i.e.
they are triad closing edges, in accordance with the high clustering coefficient
shown in Table 3). While the IR models and the friends-of-friends approaches

23

can only recommend users precisely at distance 2, iMF can recommend very
distant people in the network, who are highly unlikely – in this dataset – to
hit a link in the test set. Random walks can also travel long distances but
their personalized teleportation parameter directly controls how far they pick
their recommendations. This can be tuned (in the automatic parameter setting)
to gravitate as near the target user as is most optimal – as is the case when
the clustering coefficient of the network is high – which explains why these
algorithms perform quite well in this network.

Money and kNN obtain decent results in some datasets, but are quite sub-
optimal in the others. We can therefore say that BM25 is a decent second best
in recommendation accuracy after matrix factorization. Hence, the IR models
prove to be quite an effective option for contact recommendation, and all the
more so considering that they are orders of magnitude faster than iMF, as was
reported in [56]. In the next sections, we propose new IR-based algorithms
for closing the accuracy gap with the top performing contact recommendation
methods (i.e. iMF on Twitter and random walks on Facebook).

7. IR Models for Neighbor Selection in Collaborative Filtering

In the previous sections, we have studied how competitive IR models like
BM25 [50] or PL2[4] are when they are used as contact recommendation meth-
ods. We have observed that these algorithms regularly achieve high accuracy,
and could be considered among the most effective approaches for the task.
However, we have also observed that other baselines, such as matrix factor-
ization [30] in directed networks or personalized PageRank [66] in undirected
networks are still hard to beat. In order to close the gap between our models
and the top-performing ones, we now explore the use of user-based and item-
based nearest-neighbor (kNN) collaborative filtering approaches, following the
idea that Valcarce et al. [61, 62] proposed for general recommendation: applying
IR models as similarities.

7.1. Algorithm Definition
Recommendation by nearest-neighbors (kNN) is a wide and popular family

of collaborative filtering algorithms [45]. They rely on the principle that similar
users prefer similar items and similar items are preferred by similar users. The
main idea behind these algorithms is to select the top k most similar users/items
to the target user/candidate item (known as the neighborhood of the user/item),
and compute their recommendation scores as a linear combination of the neigh-
borhood ratings. Similarity values are computed using the ratings provided by
the users in the system to the different items.

When we use the neighborhood of the target user, we refer to such methods
as user-based kNN. There are many variations of such methods, but we focus,
from now on, on the following straightforward variant, which is well-behaved in
general domains [16]:

fu(i) =
∑

w∈Nk(u)

sim(u,w)rw(i) (27)

24

where Nk(u) represents the top k most similar users to u; sim(u,w) is the value
of a similarity function between users u and w, and rw(i) is the rating provided
by w to the item i.

When we find the most similar items to the candidate item i (Nk(i)), we
talk about item-based kNN methods. A possible approach is the following:

fu(i) =
∑

j∈Nk(i)

sim(i, j)ru(j) (28)

where Nk(i) is the neighborhood of item i, of size k, sim(i, j) represents the
similarity between items, and ru(j) is the rating the target user provides for the
neighbor item j.

We illustrate these methods in the first row of Figure 7. If we want to use
these methods for the contact recommendation task, it is straightforward: since
users also play the role of items, we just need to substitute the items by other
users, as shown in the second row of the same figure. The equations for these
approaches are then defined as:

fu(v) =
∑

t∈Nk(u)

sim(u, t)w(t, v) (29)

for the user-based version, and

fu(v) =
∑

t∈Nk(v)

sim(v, t)w(u, t) (30)

for item-based kNN.
In the previous experiments, as a typical and effective option in the kNN

approaches [45], we used the cosine similarity sim(v, t) = cos(v, t). When ob-
serving Figure 7, we can realize that the structure for computing the similarity
between users in both user-based and item-based approaches for contact rec-
ommendation is familiar: it is essentially the same structure as in the adapted
IR models and friends-of-friends link prediction approaches (Adamic-Adar [1],
MCN [35] and Jaccard [32]), which we have used in the previous sections as
direct contact recommendation methods. But now, we consider the use of such
contact ranking functions as novel methods to find nearest neighbors, that is,
as similarity functions, in a kNN scheme, which finally recommends contacts.

Furthermore, in the item formulations, to find the similarities between users,
we used the ratings they provided to the items (which here, are represented by
the outgoing edges). In the item-based case, we used the ratings provided to
the different items (here, the incoming edges). However, as we already did in
Sections 4 and 5 for the standalone models, we also find it interesting to allow
different orientations for the target/candidate user and their neighbors. Because
of that, we denote as Γq the orientation of the target/candidate user, and, as
Γd the orientation selection for the neighbor users.

25

Table 5: Percentage of edges in the test set whose endpoint users are at a given (undirected)
distance from each other in the input network.

Twitter 1-month Twitter 200-tweets Facebook

Distance Interactions Follows Interactions Follows

2 79.61% 96.45% 57.60% 91.90% 99.43%
3 19.62% 3.53% 37.73% 8.05% 0.55%
4 0.75% 0.02% 4.53% 0.06% 0.01%
5 0.02% − 0.13% − −
∞ − − − − 0.01%

7.2. Motivation

Before we test these models, we provide an intuition about why these mod-
els might improve the IR and friends-of-friends link prediction approaches when
applied as contact recommendation algorithms. We have, mainly, two reasons
for that. The first one responds to a limitation of the standalone models: all
friends-of-friends algorithms just recommend neighbor users of their own neigh-
bors. Therefore, no link is recommended towards users at undirected distance
(ignoring edge direction) greater than 2. In Table 5, we show the number of
links in the test graphs for which the endpoints are at different distances in the
input network: in general, most links are created toward users at distance 2
(even more than 95% of them in several networks), but there is a reasonably
high amount of links at distance 3, which cannot be reached by IR models and
friends-of-friends.

In a nearest-neighbors method, this distance increases to 3, allowing us to
reach more than 95% of the new edges in the test set for all the different net-
works. To see why this happens, it is sufficient to observe Figure 7. For example,
for user-based kNN, if we take the target user as origin, all the common users
between the target user and the selected user are, for sure, at undirected dis-
tance 1. Neighbor users might be at distances 1 or 2 from the target user, and,
because of that, the target user, who is at distance 1 from the neighbor user,
might be at distance 2 or 3. An analogous rationale explains why item-based
approaches achieve a similar effect.

The second reason follows our experiments in Section 6.4: for the algorithm
comparison shown in Table 4, the performance of the cosine-based collabora-
tive filtering approaches (user-based and item-based kNN) showed a marked
improvement with respect to cosine similarity on its own. It is hence natural to
wonder if the IR models might also result in better performance when similarly
integrated in a kNN scheme. The idea may seem all the more promising con-
sidering that IR models perform considerably better than cosine as standalone
contact recommendation methods.

7.3. Experimental Results

To evaluate this new idea, we apply the same experimental setup as in the
experiments reported in Section 6.4: we first tune our parameters using the

26

It
em

re
co

m
m

en
d

a
ti

o
n

Target
user

Candidate
item

Neighbor
user

Recommended item

Target
user

Candidate
item

Neighbor
item

Recommended item

C
o
n
ta

ct
re

co
m

m
en

d
a
ti

o
n

Target
user

Candidate
user

Neighbor
user

Recommended user

Candidate
user

Target
user

Neighbor
user

Recommended user

(a) User-based kNN (b) Item-based kNN

Figure 7: User-based and item-based kNN in classical item recommendation task vs. the same
models in contact recommendation.

validation graph, and then, we generate recommendations using the training set
and evaluate them on the test set. In the supplementary material (Tables A.3
to A.5), we provide the optimal parameters selection for the different user-based
and item-based approaches for the different datasets.

Figure 8 gives a broad perspective of the comparison between the optimized
standalone models and the optimized kNN approaches in terms of nDCG@10.
We observe that, with the exception of the Facebook network, user-based kNN
generally improves over the behavior of IR and link prediction approaches as
standalone methods (green points are above the y = x line in the graphs, by
considerable distance in many cases). In the Facebook network, only a few al-
gorithms achieve that improvement: BM25, Extreme BM25, Jaccard and cosine
similarity. Results are mixed in the item-based variant: in general, it improves
the worst approaches, but the advantages for the effective models such as BM25
are not as clear. For example, item-based kNN improves over these competitive
models for the interactions networks of the 1-month dataset, but not in any of
the 200-tweets networks. Surprisingly, one of the models does not work correctly
for neither the item-based or user-based approaches on any of the datasets: the
query likelihood model with Laplace smoothing does not seem to find good
neighbors in any of the strategies, achieving low nDCG.

We can notice that, in general, user-based kNN has a better performance

27

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

0

0.05

0.1

0.15

0.05 0.10 0.15
Standalone algorithm

Follows

0

0.2

0.4

0.6

0.3 0.4 0.5 0.6
Standalone algorithm

Facebook

0

0.04

0.08

0.12

0.16

0.04 0.08 0.12 0.16
Standalone algorithm

Follows

0

0.05

0.1

0.15

0 0.05 0.1 0.15

W
it

hi
n

kN
N

Standalone algorithm

Interactions

0

0.04

0.08

0.12

0.03 0.06 0.09 0.12

W
it

hi
n

kN
N

Standalone algorithm

Interactions

Twitter 1-month

Twitter 200-tweets

User-based kNN

Item-based kNN

Figure 8: Comparison of nDCG@10 values between friends-of-friends as standalone models
vs. when integrated in user-based (green) and item-based (red) kNN. The x axis represents
the nDCG@10 value for the standalone methods, and the y axis is the nDCG@10 value for
the corresponding kNN approach using the standalone method as a similarity function. The
dotted line shows the y = x cut, and the solid blue lines show the nDCG@10 value of the
implicit matrix factorization algorithm as the top-performing algorithm in the standalone
experiments.

than item-based kNN. This is consistent with previous observations in recom-
mender systems, where item-based kNN usually works best when the number of
items is much smaller than the number of users in the system, and user-based
kNN works best in the opposite situation [45]. Here, the number of users and
items is the same, which seems to result in an advantage for the user-based
variant. We therefore focus on the user-based option in the comparisons that
follow. We see already in Figure 8 that many points in the graphs lie above the
blue horizontal line: they show that many kNN combinations perform better
than the matrix factorization algorithm, which was hard to beat by standalone
alternatives in our previous experiments (blue vertical line in the graphs).

Table 6 shows a detailed comparison of user-based kNN integrating different
contact recommendation algorithms as a neighbor selection function, against the
most effective algorithms in our experiments in Section 6.4: matrix factorization
(best in three of the four Twitter datasets), personalized PageRank (best in the
Facebook dataset) and BM25 (best IR algorithm in general, and best algorithm
in the 200-tweets interaction network). As can be observed, the user-based
approach with BM25 similarity stands out among the rest in all directed graphs:

28

Table 6: Effectiveness of the user-based kNN (abbreviated as “UB” in the table) + the IR
model adaptations and other baselines. The cell color goes from red (lower) to blue (higher
values) for each metric/dataset, with the top value both underlined and highlighted in bold.
The best user-based approach (with BM25 similarity) differences with iMF are statistically
significant for the Facebook and the interactions networks in terms of nDCG@10 and MAP@10
(except for the 200-tweets dataset) and are not significant in the case of the follows networks
in any of the metrics. Full additional detail of statistical significance is given in Figures B.4
to B.6 in the supplementary material.

Algorithm nDCG MAP nDCG MAP nDCG MAP nDCG MAP nDCG MAP
UB BM25 0.1494 0.0730 0.1455 0.0603 0.1125 0.0588 0.1313 0.0467 0.5802 0.3734
UB Extreme BM25 0.1493 0.0730 0.1460 0.0597 0.1114 0.0585 0.1302 0.0459 0.5799 0.3733
UB QLJM 0.1482 0.0718 0.1460 0.0594 0.1137 0.0597 0.1309 0.0455 0.5414 0.3406
UB QLD 0.1444 0.0701 0.1431 0.0577 0.1125 0.0602 0.1247 0.0448 0.5156 0.3194
UB DLH 0.1439 0.0698 0.1442 0.0584 0.1103 0.0576 0.1277 0.0438 0.5159 0.3225
UB DFReeKLIM 0.1407 0.0672 0.1437 0.0581 0.1090 0.0571 0.1267 0.0432 0.5075 0.3150
UB VSM 0.1387 0.0675 0.1432 0.0581 0.1118 0.0597 0.1080 0.0354 0.4664 0.2811
UB DFRee 0.1402 0.0668 0.1386 0.0552 0.1068 0.0552 0.1231 0.0420 0.4872 0.3018
UB DPH 0.1410 0.0671 0.1416 0.0569 0.1064 0.0549 0.1239 0.0427 0.4914 0.3035
UB BIR 0.1287 0.0615 0.1294 0.0507 0.1008 0.0514 0.1176 0.0402 0.4748 0.2881
UB PL2 0.1260 0.0636 0.1344 0.0553 0.0931 0.0487 0.1162 0.0405 0.5498 0.3449
UB QLL 0.0097 0.0037 0.0166 0.0054 0.0162 0.0074 0.0194 0.0057 0.0443 0.0247
UB Cosine 0.1367 0.0669 0.1464 0.0599 0.1082 0.0569 0.1306 0.0456 0.5457 0.3491
UB Jaccard 0.1392 0.0683 0.1425 0.0589 0.1089 0.0572 0.1311 0.0459 0.5494 0.3521
UB Adamic-Adar 0.1264 0.0597 0.1301 0.0529 0.1043 0.0539 0.1168 0.0400 0.4775 0.2915
UB MCN 0.1291 0.0611 0.1274 0.0511 0.1020 0.0530 0.1132 0.0382 0.4670 0.2832
iMF 0.1388 0.0663 0.1462 0.0590 0.1035 0.0558 0.1329 0.0465 0.5210 0.3207
BM25 0.1042 0.0440 0.1177 0.0479 0.1097 0.0583 0.1159 0.0405 0.5731 0.3686
Pers. PageRank 0.0800 0.0315 0.0965 0.0362 0.0630 0.0317 0.0843 0.0276 0.5891 0.3826
Popularity 0.0572 0.0291 0.0449 0.0161 0.0422 0.0212 0.0397 0.0098 0.0523 0.0234
Random 0.0014 0.0005 0.0011 0.0002 0.0003 0.0001 0.0018 0.0003 0.0030 0.0009

1 month 200 tweets
Interactions Follows Interactions Follows

Facebook

in both interaction networks, it beats matrix factorization, with a significant
difference in nDCG (and also in terms of MAP for the 1-month network); in the
follows networks, the model is slightly behind iMF in terms of nDCG and slightly
above it for MAP, but the results are not statistically significant in either metric
(thus indicating a technical tie). On the Facebook network, user-based BM25
is also the best kNN combination, but it does not improve over personalized
PageRank. Other strong IR models when used as similarities are Extreme BM25
and query likelihood with Jelinek-Mercer smoothing. In contrast, BIR and PL2
do not provide good results in general, and Laplace query likelihood fails at
finding useful neighbors for recommendation.

In conclusion, the use of IR models as similarities within nearest-neighbors
recommendation schemes provides an improvement over the standalone mod-
els, especially in the case of directed networks like Twitter, where user-based
approaches with BM25 or query likelihood similarities improve or, at least, tie

29

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

with the results of the best approaches in the experiments described in Sec-
tion 6.4. Therefore, the user-based kNN “pass” after the standalone methods
manages to catch up with and overcome the implicit matrix factorization ap-
proach. This is interesting since, despite not being as fast as the IR models
on their own, the training and execution times needed for a user-based nearest-
neighbors approach is orders of magnitude smaller than that needed for the iMF
algorithm [56], thus posing a good baseline for link recommendation.

8. Learning to Rank

Thus far, we have defined and analyzed different unsupervised approaches
for suggesting people to follow or befriend in a given network: no information
about the relevance of the approaches was used in order to train them. However,
it has been found in the last few years that the top performance in text retrieval
is commonly achieved by supervised machine learning approaches such as learn-
ing to rank techniques [37]. Therefore, we now study whether we can further
enhance the effectiveness of IR models in contact recommendation through such
learning to rank techniques.

8.1. Adapting Learning to Rank to Contact Recommendation

Since applying learning to rank to search markedly differs from the tradi-
tional unsupervised models, before we report our experiments, we need to de-
termine how these approaches can be applied for suggesting users in networks.
In Section 8.1.1, we describe the general process for deploying a learning to rank
technique in textual IR. Then, in Section 8.1.2, we describe how we adapt such
a process to the task of contact recommendation.

8.1.1. Learning to Rank in Textual IR

In devising a search system using a learning to rank approach, two steps
can be distinguished: how the model is built (i.e. how the training is achieved),
and how the trained model is applied in production. To train the model, two
sets of queries are needed: a set of training queries and a set of validation
queries (different from the training ones). Since learning to rank methods are
supervised, a set of relevance judgments is needed for each of these queries.
Once both sets have been collected, the following steps are typically followed:

1. For each training query, obtain a set of k candidate documents using a
simple IR model.

2. For each retrieved document, generate a fixed set of features involving the
document and the query.

3. Using those features and example relevance judgments for each query-
document pair, train the model. Use the validation data to prevent over-
fitting.

30

User 𝑢

IR

framework

Feature

calculator

C
an

di
da

te

se
le

ct
io

n Learning to

rank model

𝑓𝑢 ()

Figure 9: Framework for using learning to rank models.

The first step allows the system to do some initial pruning of documents:
typically, only a tiny fraction of the documents in a collection provides useful
information for the query. Since unsupervised IR models are usually effective
for the IR task, applying one of these models allows to retrieve a subset of
relevant documents, as well as a set of negative examples. A typical way to
retrieve the k initial documents is to use a model that has good values for such
metrics as recall at cutoff k. Indeed, Liu [37] described the common use of the
classical BM25 weighting model to retrieve k = 1000 documents. Macdonald et
al. [40] examined the necessary value of k, the number of candidate documents
to retrieve – for large corpora such as ClueWeb09, this was found to be upwards
of 1000 for informational queries, but less for navigational queries when anchor
text was used.

The second step is possibly the most important: determining a good set of
features that effectively capture the search task can make a major difference for
learning to rank models to achieve good results. In IR, a large variety of features
have been proposed and evaluated, such as deploying various weighting mod-
els [41] or (query independent) document properties such as the PageRank [14]
score or the document length.

Once the model is trained, it can be used to provide search results. To do
that, the procedure for a query is:

1. Use the same IR model as before to select k initial documents.

2. Generate the features for each query-document pair. Features should be
the same as used in training.

3. Using the feature vectors for each document, obtain the score of the doc-
ument.

4. Sort the documents according to their scores to produce the final ranking.

8.1.2. Learning to Rank in Contact Recommendation

Since we want to apply learning to rank techniques for recommending con-
tacts, we have to adapt the steps listed in the previous section to our task. To
do that, we make use of the mapping we previously applied in Sections 4 and 5.
We can then adapt learning to rank to contact recommendation by substituting

31

Data subsets in unsupervised recommendation Learning to rank elements

Training subset Training/validation features
Validation subset Training/validation relevance judgments
Input subset Input features for evaluation
Test subset Test relevance judgments

Table 7: Relation between the split described in Section 6 and the learning to rank elements.

target users for training queries, candidate users for documents, and user pair
features for query-document pair features.

Similarly to the evaluation of unsupervised contact recommendation, we use
three disjoint sub-networks (three disjoint sets of edges): training, validation
and test sets, as described in Section 6.2. But now, the training and validation
sets play quite a different role: rather than used for hyperparameter tuning,
they are leveraged to generate feature vectors for target-candidate user pairs,
labelled with relevance judgments. The relevance judgments are taken from
the validation set: edges present in the validation set are used as positive rel-
evance, and user pairs absent from it are taken as non-relevant. The features
are built from the training set as follows: taking the training edges as input,
we sample the top k candidate contacts for each target user using a standalone
contact recommender. Then, we generate a feature vector (possibly including
recommender scores) for each sampled target-candidate user pair.

Now the set of relevance-labelled features is randomly split into a new train-
ing and a new validation subset, in such a way that all feature vectors of the
same target user are assigned to the same side of the split. Then, the learn-
ing to rank algorithm is trained on these two sets. Finally, we run the trained
learning algorithms on the union of the training and validation sets: candidates
are sampled, features are generated, and the final contact recommendations are
produced using those features, which are then evaluated using the test edges as
final relevance judgments. We illustrate these steps in Figure 9, while Table 7
summarizes the relationship between the elements in the original split, described
in Section 6 and the feature sets we use in our learning to rank experiments.

8.2. Experimental Setup

Using the approach described in he previous section, we now want to study
whether we can actually obtain better contact recommendation performances
with the supervised learning to rank techniques than with the unsupervised
IR-based models (both standalone and within a kNN scheme) as described in
Sections 5 and 7. For this purpose, we first describe the setup of our experiments.
In the following, we describe the sampling approach for each dataset, the cutoff
for selecting the candidate users, the learning to rank approaches, the set of
features, and how to build the training, validation and test sets.

First, we describe how we select the sampling approach. Document sampling
in learning to rank in search tasks is commonly undertaken using IR models
[37, 40]: taking a query as input, the IR models return documents that are

32

related to the query through the terms they have in common. If we see the
query/term/document space as a tripartite graph, this returns graph nodes
(documents) at distance two from the query node. In order to follow the same
principle in the adaptation to contact recommendation, we consider sampling
methods that return “document” users at undirected distance two from the
target users.

Of all the standalone methods considered in our previous sections, only the
IR models and the friends-of-friends approaches ensure this constraint. Thus,
taking all the standalone IR models described in Section 5 and the friends-
of-friends baselines, we take their optimal configurations for each network, as
described in Table A.2. in the supplementary material. Then, on the validation
set we select, for each network, the recommendation method that maximizes
recall at the same cutoff as that we chose for the sampling approach, which we
set to k = 1, 000. The selected samplers are the following: BIR for the Facebook
network and the 200-tweets follows datasets, BM25 for the 1-month interactions
dataset, and Extreme BM25 for the remaining networks.

Once the labelled features for training are generated, we randomly select the
features of 80% of the users as the training set, and use the rest as the validation
set for training the learning to rank approaches. In our experiments, we train
and evaluate a LambdaMART model [15, 67]: a learning to rank model based
on gradient-boosted regression trees. In particular, we use the Jforests Lamb-
daMART implementation developed by Ganjisaffar [22]. Note that we do not
vary the hyperparameters of the learning to rank algorithm – indeed, we apply
the default parameters provided by the authors of Jforests in their implementa-
tion4. Tuning the hyperparameters of LambdaMART would only likely improve
the effectiveness, yet, as we show later in Section 8.3, the LambdaMART model
using the default parameters already outperforms those models evaluated in this
article thus far.

Since both the friends-of-friends and kNN approaches provide competitive
baselines for contact recommendation, following previous works in IR [41], we
have chosen to combine different contact recommendation algorithms as learning
to rank ensembles to improve their effectiveness: we take as features the ranking
functions of a selection of approaches, which we list in Table 9. Instead of taking
the raw values of these ranking functions, we take a common approach when
multiple algorithms are combined: we normalize the ranking scores by minmax
[34]. For each target user u, we normalize the feature values by:

f̄u(v) =
fu(v)−minw∈Uu fu(w)

maxw∈Uu fu(w)−minw∈Uu fu(w)
(31)

where Uu denotes the selection of candidate users for user u. If a target-
candidate pair is not retrieved by the feature algorithm, we set f̄u(v) = 0.

4https://github.com/yasserg/jforests (Last accessed 31th July 2019)

33

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

Table 8: Comparison between LambdaMART and the best algorithms in the previous sections
using nDCG@10 and MAP@10. A cell color goes from red (lower) to blue (higher values)
for each metric/dataset, with the top value both underlined and highlighted in bold. Full
statistical significance details are given in Figures B.7 in the supplementary material.

Algorithm nDCG MAP nDCG MAP nDCG MAP nDCG MAP nDCG MAP
LambdaMART 0.1424 0.0673 0.1538 0.0641 0.1272 0.0695 0.1373 0.0486 0.6112 0.4006
UB BM25 0.1494 0.0730 0.1455 0.0603 0.1125 0.0588 0.1313 0.0467 0.5802 0.3734
iMF 0.1388 0.0663 0.1462 0.0590 0.1035 0.0558 0.1329 0.0465 0.5210 0.3207
Pers. PageRank 0.0800 0.0315 0.0965 0.0362 0.0630 0.0317 0.0843 0.0276 0.5891 0.3826

1 month Facebook200 tweets
Interactions Follows Interactions Follows

8.3. Results

In the following, we first report and analyze the performance of learning to
rank in contact recommendation. Next, we assess the relative importance of the
various used features in learning to rank.

8.3.1. General Effectiveness

First, we check how effective learning to rank is when including all the pro-
posed algorithms in Sections 5 and 7 as features. Table 8 shows the comparison
of the LambdaMART ensemble with the top standalone recommendation algo-
rithms: the user-based BM25, as the best algorithm in the interaction networks,
implicit matrix factorization (iMF) as the top approach in the follows networks,
and Personalized PageRank, as the best algorithm in the Facebook network. We
note that, with the exception of the interactions network of the 1-month dataset,
the learning to rank ensembles outperform all algorithms, thus resulting in the
most effective approach in our reported experiments. This advantage is always
statistically significant for both nDCG@10 and MAP@10, excepting MAP for
the 200-tweets follows network. In the 1-month interaction network, despite not
beating the user-based kNN combined with BM25, the LambdaMART ensemble
obtains slightly (though not significantly) better results than matrix factoriza-
tion, making it the second best approach. The reason why LambdaMART does
not beat the user-based kNN on that dataset, despite including it as a fea-
ture, lies in the properties of the nearest-neighbors approaches: as we explained
earlier, the user-based approaches are able to recommend users up to distance
three, while we intentionally restricted learning to rank to recommend users
only at distance 2, as a result of the initial selection of candidates by standalone
IR models (in this case, BM25) which, by structure, operate at two hops in the
network.

8.3.2. Feature Selection

Another question that arises is the identification of the specific features that
make the learning to rank approach particularly effective. In order to answer
this question, we first train different LambdaMART models, selecting different

34

http://ir.ii.uam.es/pubs/ipm2020-supplementary.pdf

Table 9: Groups of features.

Group Algorithms

Probability ranking principle (PRP) BIR, BM25, Extreme BM25
Query likelihood (QL) QLD, QLJM, QLL
Divergence from Randomness (DFR) DFRee, DFReeKLIM, DLH, DPH, PL2
Vector space model (VSM) VSM
Link prediction (LP) Adamic-Adar, Cosine, Jaccard, MCN
Item-based (IB kNN) All item-based kNN algorithms
User-based (UB kNN) All user-based kNN algorithms
All IR models (IR) VSM, PRP, QL, DFR
Friends-of-friends (FOAF) IR, LP
Nearest neighbors (All kNN) UB kNN, IB kNN
All models FOAF, UB kNN, IB NN

groups of features. The different groups we choose are shown in Table 9. Then,
we evaluate these algorithms over the test set to compare their differences.

As we can see in Figure 10, in all the networks, the user-based kNN ap-
proaches combined with the friends-of-friends methods turn out to be the best
features on their own. Beyond that, we observe some commonalities and differ-
ences between the different networks. When it comes to the IR algorithms, the
probability ranking principle usually achieves the best results, followed by DFR,
while the query likelihood approaches do not make good features for our task.
This is a bit different in Facebook, where the QL model is tied with the PRP
ones. Link prediction methods such as Adamic-Adar and Jaccard also work
better as features than the combination of all IR models. The only exception to
this is the interaction networks for the 200-tweets dataset. In this network, the
IR models achieve a large advantage thanks to the performance of the BM25
algorithm on this dataset, thus making the LambdaMART model trained only
with the link prediction approaches a bit worse than it is in other networks.

Finally, for three of the networks, ensembles of item-based nearest-neighbor
models provide a better performance than standalone friends-of-friends models,
and are the second best set of features after the user-based kNN. The two
only exceptions are the Facebook network, where item-based kNN is among the
worst approaches, and the 200-tweets interactions, where BM25 has a marked
advantage, making it difficult for the item-based approaches to improve the
performance of the IR models.

9. Conclusions and Future Work

Although separately developed to much extent by different communities,
text-based search and recommendation are very related tasks. This relation
has been explored in prior research on the general perspective of adapting IR
techniques to item recommendation [13, 62]. In our present work, we further
instantiate this step to the recommendation of contacts in social networks. Our
thorough investigation has found that adapting IR models leads to empirically
effective solutions, that are to some extent simpler than the previously developed

35

0.09

0.11

0.13

0.15

PR
P

Q
L

D
FR LP IR

FO
A

F
IB

 k
N

N
IB

 k
N

N
 &

 L
P

IB
 k

N
N

 &
 IR

IB
 k

N
N

 &
 F

O
A

F
U

B
 k

N
N

U
B

 k
N

N
 &

 L
P

U
B

 k
N

N
 &

 IR
U

B
 k

N
N

 &
 F

O
A

F
A

ll
kN

N
A

ll
kN

N
 &

 L
P

A
ll

kN
N

 &
 IR A

ll

nD
C

G
@

10

Interactions

0.1

0.12

0.14

0.16

PR
P

Q
L

D
FR LP IR

FO
A

F
IB

 k
N

N
IB

 k
N

N
 &

 L
P

IB
 k

N
N

 &
 IR

IB
 k

N
N

 &
 F

O
A

F
U

B
 k

N
N

U
B

 k
N

N
 &

 L
P

U
B

 k
N

N
 &

 IR
U

B
 k

N
N

 &
 F

O
A

F
A

ll
kN

N
A

ll
kN

N
 &

 L
P

A
ll

kN
N

 &
 IR A

ll

Follows

0.08

0.1

0.12

0.14

PR
P

Q
L

D
FR LP IR

FO
A

F
IB

 k
N

N
IB

 k
N

N
 &

 L
P

IB
 k

N
N

 &
 IR

IB
 k

N
N

 &
 F

O
A

F
U

B
 k

N
N

U
B

 k
N

N
 &

 L
P

U
B

 k
N

N
 &

 IR
U

B
 k

N
N

 &
 F

O
A

F
A

ll
kN

N
A

ll
kN

N
 &

 L
P

A
ll

kN
N

 &
 IR A

ll

nD
C

G
@

10

Interactions

0.09

0.11

0.13

0.15

PR
P

Q
L

D
FR LP IR

FO
A

F
IB

 k
N

N
IB

 k
N

N
 &

 L
P

IB
 k

N
N

 &
 IR

IB
 k

N
N

 &
 F

O
A

F
U

B
 k

N
N

U
B

 k
N

N
 &

 L
P

U
B

 k
N

N
 &

 IR
U

B
 k

N
N

 &
 F

O
A

F
A

ll
kN

N
A

ll
kN

N
 &

 L
P

A
ll

kN
N

 &
 IR A

ll

Follows

Twitter 1 month

Twitter 200 tweets

0.48

0.52

0.56

0.6

0.64

PR
P

Q
L

D
FR LP IR

FO
A

F
IB

 k
N

N
IB

 k
N

N
 &

 L
P

IB
 k

N
N

 &
 IR

IB
 k

N
N

 &
 F

O
A

F
U

B
 k

N
N

U
B

 k
N

N
 &

 L
P

U
B

 k
N

N
 &

 IR
U

B
 k

N
N

 &
 F

O
A

F
A

ll
kN

N
A

ll
kN

N
 &

 L
P

A
ll

kN
N

 &
 IR A

ll

nD
C

G
@

10

Facebook

Figure 10: Comparison of LambdaMART models with different sets of features, defined in
Table 9.

adaptations of IR models for the general item recommendation task [13]. We
found that BM25 in particular is competitive with the best state-of-the-art
contact recommendation approaches in terms of effectiveness over Twitter and
Facebook data representing social interactions of different types – and obtained
with different sampling approaches.

Interestingly, in our experiments, IR models have been shown to be even

36

– consistently and substantially – more effective when used as neighbor selec-
tion methods within nearest-neighbor collaborative filtering schemes. Even IR
models with average or poor performance as standalone methods become com-
petitive within this strategy – i.e. even if they are not particularly effective at
directly recommending social bonds by themselves, they are effective at finding
good neighbors whose friends are interesting people for the target user to bond
or interact with. As a natural step for exploring how far we can improve ef-
fectiveness by borrowing and tailoring successful techniques from IR, we have
investigated the adaptation of learning to rank techniques – an approach that
generally enables the best results in search tasks – confirming that indeed fur-
ther improvements are achieved in this direction in the contact recommendation
task. Overall, we found that the IR models are effective in three roles: as direct
contact recommenders, as neighbor selectors, and as samplers and features in
learning to rank.

Compared to alternative heuristic solutions, the translation of new and prin-
cipled IR models and their thorough adaptation to contact recommendation can
add new and deeper insights to our understanding of the contact recommenda-
tion task and how we solve it, by importing the theory and foundations upon
which the IR models were developed. Reciprocally, this can contribute to a
broader perspective on IR models, their meaning, interpretation, and useful-
ness in different tasks, bringing higher levels of abstraction. We have found
for instance that some IR models (e.g. BM25 in our experiments) are able to
take a better advantage of the user-user interaction frequency than heuristic
algorithms. We have likewise observed that the followers seem to describe the
social value of candidate recommendations better than the followees, whereas
the union of both consistently appears to best represent the social needs of
target users.

It should be stressed that the analogy between contact recommendation and
text IR is not a trivial equivalence. It involves, to begin with, mappings from a
tridimensional space (a tripartite graph of queries, documents and terms) to a
unidimensional space (a unipartite graph of users). Moreover, in text retrieval
the content of documents is often assumed to be static; if it does change, a
document update can be processed as a new document. In our approach, the
equivalent of the words in documents are the social bonds of candidate users
which, in contrast to document retrieval, evolve over time – a condition inher-
ently needed for the recommendation task to make sense: we are predicting how
the network will grow in the future based on its present structure, and no useful
recommendation is possible at zero growth. In the text IR analogy, the contact
recommendation task can be seen from a certain angle as predicting the new
words that will be added into a document in the future. On the other hand, if a
link is present in the input network, it would not be useful to recommend it, in
the general scenario where users may find little use in being recommended peo-
ple they are already connected to. This sets an important difference compared
to text retrieval, where the equivalent constraint would imply that a document
that is known to be relevant to the query should not be returned.

Beyond our present results, our research opens a new direction through which

37

innovations in the area of IR models can be potentially translated to the contact
recommendation problem. As future work, we plan to extend our current study
by considering further evaluation dimensions beyond accuracy, such as recom-
mendation novelty and diversity [19, 58], or the effects that recommendation
can have on the evolution of the network structure [3, 55].

Acknowledgements

Javier Sanz-Cruzado and Pablo Castells were partially supported by the
Spanish Government (grant ref. TIN2016-80630-P). Craig Macdonald and Iadh
Ounis were partially supported by the European Community’s Horizon 2020
research and innovation programme, under grant agreement nº 779747 entitled
BigDataStack.

References

[1] Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the Web.
Social Networks, 25 , 211–230. doi:10.1016/S0378-8733(03)00009-1.

[2] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible ex-
tensions. IEEE Transactions on Knowledge and Data Engineering , 17 ,
734–749. doi:10.1109/TKDE.2005.99.

[3] Aiello, L. M., & Barbieri, N. (2017). Evolution of Ego-networks in Social
Media with Link Recommendations. In Proceedings of the 10th ACM inter-
national conference on Web Search and Data Mining (WSDM 2017) (pp.
111–120). Cambridge, United Kingdom: ACM. doi:10.1145/3018661.
3018733.

[4] Amati, G. (2003). Probability Information Models for Retrieval based on
Divergence from Randomness. Ph.D. thesis University of Glasgow.

[5] Amati, G. (2006). Frequentist and bayesian approach to information re-
trieval. In ECIR 2006: Advances in Information Retrieval number 3936
in LNCS (pp. 13–24). London, United Kingdom: Springer. doi:10.1007/
11735106_3.

[6] Amati, G., Ambrosi, E., Bianchi, M., Gaibisso, C., & Gambosi, G. (2007).
FUB, IASI-CNR and University of Tor Vergata at TREC 2007 Blog track.
In Proceedings of The 16th Text REtrieval Conference (TREC 2007).
Gaithersburg, Maryland, USA: NIST.

[7] Amati, G., Amodeo, G., Bianchi, M., Marcone, G., Bordoni, F. U.,
Gaibisso, C., Gambosi, G., Celi, A., Nicola, C. D., & Flammini, M. (2011).
FUB, IASI-CNR, UNIVAQ at TREC 2011 microblog track. In Proceed-
ings of The 20th Text REtrieval Conference (TREC 2011). Gaithersburg,
Maryland, USA: NIST.

38

http://dx.doi.org/10.1016/S0378-8733(03)00009-1
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/3018661.3018733
http://dx.doi.org/10.1145/3018661.3018733
http://dx.doi.org/10.1007/11735106_3
http://dx.doi.org/10.1007/11735106_3

[8] Amati, G., & Van Rijsbergen, C. J. (2002). Probabilistic models of informa-
tion retrieval based on measuring the divergence from randomness. ACM
Transactions on Information Systems, 20 , 357–389. doi:10.1145/582415.
582416.

[9] Backstrom, L., & Leskovec, J. (2011). Supervised random walks. In
Proceedings of the 4th ACM international conference on Web Search and
Data Mining (WSDM 2011) (pp. 635–644). Hong Kong, China: ACM.
doi:10.1145/1935826.1935914.

[10] Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern Information Retrieval:
The Concepts and Technology behind Search. (2nd ed.). Harlow, England:
Pearson Education Ltd.

[11] Barabàsi, A.-L., & Albert, R. (1999). Emergence of Scaling in Random
Networks. Science, 286 , 509–512. doi:10.1126/science.286.5439.509.

[12] Belkin, N. J., & Croft, W. B. (1992). Information filtering and information
retrieval: two sides of the same coin? Communications of the ACM , 35 ,
29–38. doi:10.1145/138859.138861.

[13] Belloǵın, A., Wang, J., & Castells, P. (2013). Bridging memory-based
collaborative filtering and text retrieval. Information Retrieval , 16 , 697–
724. doi:10.1007/s10791-012-9214-z.

[14] Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30 , 107–117.
doi:10.1016/S0169-7552(98)00110-X.

[15] Burges, C. (2010). From RankNet to LambdaRank to LambdaMART: An
Overview . Microsoft Research Technical Report MSR-TR-2010-82 Mi-
crosoft.

[16] Cañamares, R., & Castells, P. (2017). A probabilistic reformulation of
memory-based collaborative filtering - implications on popularity biases. In
Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2017) (pp. 215–224).
Tokyo, Japan: ACM. doi:10.1145/3077136.3080836.

[17] Cannistraci, C. V., Alanis-Lobato, G., & Ravasi, T. (2013). From link-
prediction in brain connectomes and protein interactomes to the local-
community-paradigm in complex networks. Scientific Reports, 3 . doi:10.
1038/srep01613.

[18] Carterette, B. A. (2012). Multiple Testing in Statistical Analysis of
Systems-Based Information Retrieval Experiments. ACM Transactions on
Information Systems, 30 . doi:10.1145/2094072.2094076.

39

http://dx.doi.org/10.1145/582415.582416
http://dx.doi.org/10.1145/582415.582416
http://dx.doi.org/10.1145/1935826.1935914
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1145/138859.138861
http://dx.doi.org/10.1007/s10791-012-9214-z
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1145/3077136.3080836
http://dx.doi.org/10.1038/srep01613
http://dx.doi.org/10.1038/srep01613
http://dx.doi.org/10.1145/2094072.2094076

[19] Castells, P., Hurley, N. J., & Vargas, S. (2015). Novelty and Diversity in
Recommender Systems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Rec-
ommender Systems Handbook (pp. 881–918). Boston, MA, USA: Springer.
doi:10.1007/978-1-4899-7637-6_26.

[20] Chaney, A. J., Blei, D. M., & Eliassi-Rad, T. (2015). A probabilistic model
for using social networks in personalized item recommendation. In Proceed-
ings of the 9th ACM Conference on Recommender Systems (RecSys 2015)
(pp. 43–50). Vienna, Austria: ACM. doi:10.1145/2792838.2800193.

[21] Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (). Graph
neural networks for social recommendation. In Proceedings of the The Web
Conference 2019 (WWW 2019) (pp. 417–426). San Francisco, CA, USA:
ACM. doi:10.1145/3308558.3313488.

[22] Ganjisaffar, Y., Caruana, R., & Lopes, C. V. (2011). Bagging gradient-
boosted trees for high precision, low variance ranking models. In Proceed-
ings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2011) (pp. 85–94). Beijing,
China: ACM. doi:10.1145/2009916.2009932.

[23] Goel, A., Gupta, P., Sirois, J., Wang, D., Sharma, A., & Gurumurthy, S.
(2015). The who-to-follow system at Twitter: Strategy, algorithms, and
revenue impact. Interfaces, 45 , 98–107. doi:10.1287/inte.2014.0784.

[24] Goodman, L. A. (1961). Snowball Sampling. The Annals of Mathematical
Statistics, 32 , 148–170. doi:10.1214/aoms/1177705148.

[25] Gunawardana, A., & Shani, G. (2015). Evaluating Recommender Sys-
tems. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Sys-
tems Handbook (pp. 265–308). Boston, MA, USA: Springer. doi:10.1007/
978-1-4899-7637-6_26.

[26] Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., & Zadeh, R. (2013).
WTF: The Who to Follow Service at Twitter. In Proceedings of the 22nd
international conference on World Wide Web (WWW 2013) (pp. 505–514).
Rio de Janeiro, Brazil: ACM. doi:10.1145/2488388.2488433.

[27] Guy, I. (2015). Social Recommender Systems. In F. Ricci, L. Rokach, &
B. Shapira (Eds.), Recommender Systems Handbook (pp. 511–543). Boston,
MA: Springer. doi:10.1007/978-1-4899-7637-6_15.

[28] Hannon, J., Bennett, M., & Smyth, B. (2010). Recommending twitter
users to follow using content and collaborative filtering approaches. In
Proceedings of the 4th ACM conference on Recommender Systems (RecSys
2010) (pp. 199–206). Barcelona, Spain: ACM. doi:10.1145/1864708.
1864746.

40

http://dx.doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/10.1145/2792838.2800193
http://dx.doi.org/10.1145/3308558.3313488
http://dx.doi.org/10.1145/2009916.2009932
http://dx.doi.org/10.1287/inte.2014.0784
http://dx.doi.org/10.1214/aoms/1177705148
http://dx.doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/10.1007/978-1-4899-7637-6_26
http://dx.doi.org/10.1145/2488388.2488433
http://dx.doi.org/10.1007/978-1-4899-7637-6_15
http://dx.doi.org/10.1145/1864708.1864746
http://dx.doi.org/10.1145/1864708.1864746

[29] Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2006). Link Predic-
tion Using Supervised Learning. In Proceedings of SDM 06 Workshop on
Link Analysis, Counterterrorism and Security (pp. 1828–1832). Bethesda,
Maryland: IEEE.

[30] Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative Filtering for Im-
plicit Feedback Datasets. In Proceedings of the 8th IEEE International Con-
ference on Data Mining (ICDM 2008) (pp. 263–272). Pisa, Italy: IEEE.
doi:10.1109/ICDM.2008.22.

[31] Huang, X. L., Tiwari, M., & Shah, S. (2013). Structural Diversity in Social
Recommender Systems. In Proceedings of the 5th ACM RecSys Workshop
on Recommender Systems and the Social Web (RecSys RSWeb 2013) co-
located with the 7th ACM conference on Recommender Systems (RecSys
2013) (pp. 1–7). Hong Kong, China.

[32] Jaccard, P. (1901). Étude de la distribution florale dans une portion des
Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles,
37 , 547–579. doi:10.5169/seals-266450.

[33] Jelinek, F., & Mercer, R. (1980). Interpolated estimation of Markov source
parameters from sparse data. In E. S. Gelsema, & L. N. Kanal (Eds.),
Pattern Recognition in Practice (pp. 381–402). Amsterdam, Netherlands:
North-Holland.

[34] Lee, J. H. (1997). Analyses of multiple evidence combination. In Proceed-
ings of the 20th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 1997) (pp. 267–276).
Philadelphia, PA, USA: ACM. doi:10.1145/258525.258587.

[35] Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for
social networks. Journal of the American Society for Information Science
and Technology , 58 , 1019–1031. doi:10.1002/asi.20591.

[36] Liu, H., Hu, Z., Haddadi, H., & Tian, H. (2013). Hidden link prediction
based on node centrality and weak ties. Europhysics Letters, 101 . doi:10.
1209/0295-5075/101/18004.

[37] Liu, T.-Y. (2007). Learning to Rank for Information Retrieval. Foun-
dations and Trends in Information Retrieval , 3 , 225–331. doi:10.1561/
1500000016.

[38] Lü, L., & Zhou, T. (2011). Link prediction in complex networks: A sur-
vey. Physica A: Statistical Mechanics and its Applications, 390 , 1150–1170.
doi:10.1016/j.physa.2010.11.027.

[39] Macdonald, C., McCreadie, R., Santos, R. L., & Ounis, I. (2012). From
puppy to maturity: Experiences in developing terrier. In Proceedings of the
SIGIR 2012 Workshop in Open Source Information Retrieval (OSIR 2012)
(pp. 60–63). Portland, Oregon, USA.

41

http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.5169/seals-266450
http://dx.doi.org/10.1145/258525.258587
http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1209/0295-5075/101/18004
http://dx.doi.org/10.1209/0295-5075/101/18004
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1016/j.physa.2010.11.027

[40] Macdonald, C., Santos, R. L., & Ounis, I. (2013). The whens and hows
of learning to rank for web search. Information Retrieval , 16 , 584–628.
doi:10.1007/s10791-012-9209-9.

[41] Macdonald, C., Santos, R. L., Ounis, I., & He, B. (2013). About learning
models with multiple query-dependent features. ACM Transactions on
Information Systems, 31 , 11. doi:10.1145/2493175.2493176.

[42] MacKay, D. J. C., & Peto, L. C. B. (1995). A hierarchical Dirichlet lan-
guage model. Natural Language Engineering , 1 , 289–307. doi:10.1017/
S1351324900000218.

[43] McAuley, J., & Leskovec, J. (2012). Learning to discover social circles
in ego networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems (NIPS 2012) (pp. 539–547). Lake
Tahoe, Nevada: Curran Associates Inc.

[44] Meng, Z., Liang, S., Bao, H., & Zhang, X. (2019). Co-embedding attributed
networks. In Proceedings of the 12th ACM International Conference on
Web Search and Data Mining (WSDM 2019) (pp. 393–401). Melbourne,
Australia: ACM. doi:10.1145/3289600.3291015.

[45] Ning, X., Desrosiers, C., & Karypis, G. (2015). A Comprehensive Survey of
Neighborhood-Based Recommendation Methods. In F. Ricci, L. Rokach, &
B. Shapira (Eds.), Recommender Systems Handbook (pp. 37–77). Boston,
MA, USA: Springer. doi:10.1007/978-1-4899-7637-6_2.

[46] Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., & Lioma,
C. (2006). Terrier: A high performance and scalable information retrieval
platform. In Proceedings of the 2nd workshop on Open Source Information
Retrieval (OSIR 2006) at SIGIR 2006 (pp. 18–25). Seattle, WA.

[47] Parapar, J., Belloǵın, A., Castells, P., & Barreiro, A. (2013). Relevance-
based language modelling for recommender systems. Information Process-
ing and Management , 49 , 966–980. doi:10.1016/j.ipm.2013.03.001.

[48] Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to
information retrieval. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in Information Retrieval
(SIGIR 1998) (pp. 275–281). Melbourne, Australia: ACM. doi:10.1145/
290941.291008.

[49] Robertson, S. E. (1977). The Probability Ranking Principle in IR. Journal
of Documentation, 33 , 294–304. doi:10.1108/eb026647.

[50] Robertson, S. E., & Zaragoza, H. (2009). The Probabilistic Relevance
Framework : BM25 and Beyond. Foundations and Trends in Information
Retrieval , 3 , 333–389. doi:10.1561/1500000019.

42

http://dx.doi.org/10.1007/s10791-012-9209-9
http://dx.doi.org/10.1145/2493175.2493176
http://dx.doi.org/10.1017/S1351324900000218
http://dx.doi.org/10.1017/S1351324900000218
http://dx.doi.org/10.1145/3289600.3291015
http://dx.doi.org/10.1007/978-1-4899-7637-6_2
http://dx.doi.org/10.1016/j.ipm.2013.03.001
http://dx.doi.org/10.1145/290941.291008
http://dx.doi.org/10.1145/290941.291008
http://dx.doi.org/10.1108/eb026647
http://dx.doi.org/10.1561/1500000019

[51] Sakai, T. (2018). Laboratory Experiments in Information Retrieval - Sample
Sizes, Effect Sizes, and Statistical Power volume 40 of The Information
Retrieval Series. Springer. doi:10.1007/978-981-13-1199-4.

[52] Salton, G., & McGill, M. J. (1983). Introduction to modern information
retrieval.. New York, NY, USA: McGraw-Hill, Inc.

[53] Salton, G., Wong, A., & Yang, C. (1975). A vector space model for auto-
matic indexing. Communications of the ACM , 18 , 613–620. doi:10.1145/
361219.361220.

[54] Sanz-Cruzado, J., & Castells, P. (2018). Contact Recommendations in
Social Networks. In S. Berkovsky, I. Cantador, & D. Tikk (Eds.), Collab-
orative Recommendations: Algorithms, Practical Challenges and Applica-
tions (pp. 519–569). Singapore: World Scientific Publishing. doi:10.1142/
9789813275355_0016.

[55] Sanz-Cruzado, J., & Castells, P. (2018). Enhancing structural diversity
in social networks by recommending weak ties. In Proceedings of the 12th
ACM Conference on Recommender Systems (RecSys 2018) (pp. 233–241).
Vancouver, Canada: ACM. doi:10.1145/3240323.3240371.

[56] Sanz-Cruzado, J., & Castells, P. (2019). Information retrieval models for
contact recommendation in social networks. In ECIR 2019: Advances in
Information Retrieval number 11437 in LNCS (pp. 148–163). Cologne,
Germany: Springer. doi:10.1007/978-3-030-15712-8_10.

[57] Sanz-Cruzado, J., Castells, P., & López, E. (2019). A simple multi-armed
nearest-neighbor bandit for interactive recommendation. In Proceedings of
the 13th ACM Conference on Recommender Systems (RecSys 2019) (pp.
358–362). Copenhagen, Denmark: ACM. doi:10.1145/3298689.3347040.

[58] Sanz-Cruzado, J., Pepa, S. M., & Castells, P. (2018). Structural Novelty
and Diversity in Link Prediction. In Companion of the The Web Conference
2018 on The Web Conference 2018 (WWW 2018) (pp. 1347–1351). Lyon,
France: IW3C2. doi:10.1145/3184558.3191576.

[59] Shannon, C. E. (1948). A mathematical theory of communication. Bell
System Technical Journal , 27 , 379–423. doi:10.1002/j.1538-7305.1948.
tb01338.x.

[60] Tang, J., Hu, X., & Liu, H. (2013). Social recommendation: a re-
view. Social Network Analysis and Mining , 3 , 1113–1133. doi:10.1007/
s13278-013-0141-9.

[61] Valcarce, D. (2015). Exploring statistical language models for recom-
mender systems. In Proceedings of the 9th ACM conference on Recom-
mender Systems (RecSys 2015) (pp. 375–378). Vienna, Austria: ACM.
doi:10.1145/2792838.2796547.

43

http://dx.doi.org/10.1007/978-981-13-1199-4
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1142/9789813275355_0016
http://dx.doi.org/10.1142/9789813275355_0016
http://dx.doi.org/10.1145/3240323.3240371
http://dx.doi.org/10.1007/978-3-030-15712-8_10
http://dx.doi.org/10.1145/3298689.3347040
http://dx.doi.org/10.1145/3184558.3191576
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/s13278-013-0141-9
http://dx.doi.org/10.1007/s13278-013-0141-9
http://dx.doi.org/10.1145/2792838.2796547

[62] Valcarce, D., Parapar, J., & Barreiro, Á. (2017). Axiomatic Analysis
of Language Modelling of Recommender Systems. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 25 , 113–127.
doi:10.1142/S0218488517400141.

[63] Valverde-Rebaza, J. C., Roche, M., Poncelet, P., & de Andrade Lopes, A.
(2018). The role of location and social strength for friendship prediction in
location-based social networks. Information Processing and Management ,
54 , 475 – 489. doi:10.1016/j.ipm.2018.02.004.

[64] Wang, J., Robertson, S., de Vries, A. P., & Reinders, M. J. T. (2008). Prob-
abilistic relevance ranking for collaborative filtering. Information Retrieval ,
11 , 477–497. doi:10.1007/s10791-008-9060-1.

[65] Wang, J., de Vries, A. P., & Reinders, M. J. T. (2008). Unified relevance
models for rating prediction in collaborative filtering. ACM Transactions
on Information Systems, 26 , 16:1–16:42. doi:10.1145/1361684.1361689.

[66] White, S., & Smyth, P. (2003). Algorithms for estimating relative impor-
tance in networks. In Proceedings of the 9th ACM SIGKDD international
conference on Knowledge Discovery and Data Mining (KDD 2003) (pp.
266–275). Washington, DC, USA: ACM. doi:10.1145/956755.956782.

[67] Wu, Q., Burges, C., Svore, K., & Gao, J. (2008). Ranking, Boosting and
Model Adaptation. Microsoft Research Technical Report MSR-TR-2008-
109 Microsoft Research.

44

http://dx.doi.org/10.1142/S0218488517400141
http://dx.doi.org/10.1016/j.ipm.2018.02.004
http://dx.doi.org/10.1007/s10791-008-9060-1
http://dx.doi.org/10.1145/1361684.1361689
http://dx.doi.org/10.1145/956755.956782

	Introduction
	Related Work
	Contact Recommendation and Link Prediction
	Relation between IR and Recommendation
	Learning to rank

	Preliminaries
	IR Model Adaptation Framework for Contact Recommendation
	Adaptation of Specific IR Models
	Probability Ranking Principle (PRP) Models
	Binary Independence Retrieval (BIR)
	BM25
	Extreme BM25

	Language Models
	Divergence from Randomness (DFR) Models
	PL2
	DFRee
	DFReeKLIM
	DPH and DLH

	Vector Space Model

	Experiments with Standalone IR Models
	Data
	Experimental Procedure
	Recommendation Algorithms
	General Results

	IR Models for Neighbor Selection in Collaborative Filtering
	Algorithm Definition
	Motivation
	Experimental Results

	Learning to Rank
	Adapting Learning to Rank to Contact Recommendation
	Learning to Rank in Textual IR
	Learning to Rank in Contact Recommendation

	Experimental Setup
	Results
	General Effectiveness
	Feature Selection

	Conclusions and Future Work

