
Evaluating Knowledge Graph Sources for
Non-Personalized Financial Asset Recommendation:

10K Reports vs. Wikidata

Lubingzhi Guo�[0009−0001−9283−5747], Javier Sanz-Cruzado[0000−0002−7829−5174],
and Richard McCreadie[0000−0002−2751−2087]

University of Glasgow, Glasgow G12 8QQ, UK
l.guo.1@research.gla.ac.uk,

{javier.sanz-cruzadopuig, richard.mccreadie}@glasgow.ac.uk

Abstract. Financial asset recommender (FAR) systems suggest investment as-
sets to customers based on past market information. Many of these models choose
those securities which they estimate to be more profitable for customers. Finan-
cial knowledge graphs (KGs) – data structures containing information about as-
sets and their relations to other involved entities (companies, people) – have been
one of the data sources exploited to drive asset selection. Although the construc-
tion of knowledge graphs from different sources (news, reports) has previously
been investigated, there has been limited analysis of the effect these construc-
tion strategies have for FAR. In this work, we compare two different knowledge
graphs representing U.S. stocks under a unified FAR framework: a knowledge
graph crawled from a general knowledge base, Wikidata, and a knowledge graph
built by extracting entities and relations from 10K financial reports using the
GoLLIE open information extraction model. We show that integrating these KGs
in FAR can lead up to 10.7% improvements in monthly ROI. However, the nature
of these graphs makes algorithms prone to bias the recommendations towards
different asset types. Therefore, we further propose and evaluate an adaptive
graph selection strategy, which dynamically chooses the suitable graph predic-
tion model—trained on either the 10K Graph or the Wikidata Graph—for each
asset. The findings indicate that stock-level and sector-level selection strategies
respond differently to the length of the recency window, reflecting, respectively,
a preference for short-term responsiveness and long-term stability.

Keywords: Knowledge Graph Construction · Stock Recommendation · Informa-
tion Extraction

1 Introduction

Financial asset recommender systems are tools to assist investors in making informed
investment decisions [24,40,44,45]. These technologies aim to produce a ranking of
financial securities (e.g. stocks) on which a customer might invest. As one of the main
targets of these methods is to help customers increase their wealth, the majority of the
methods proposed in this field rely on historical pricing information of assets to predict
stock price movement [29,55]. This core signal is then often augmented through the

2 L. Guo et al.

integration of evidence from external information sources such as textual data from
news and social media [18,9,10].

A financial knowledge graph (KG) is a data structure that can be used to store such
external information [10,11,50,57]. In such a graph, nodes represent entities (compa-
nies, people), while edges represent relations between them (e.g. between-company or
board member relationships). Multiple methods have been proposed for the creation
of financial KGs, including crawling general knowledge bases like Wikidata [14] or
extracting facts and events from financial reports [20,33] or news [10,13].

Different KG creation techniques have advantages and disadvantages. On the one
hand, graphs extracted from financial documents (such as news or financial reports) in-
clude timely information about companies and related entities, which is specific to the
financial domain. However, they are generated by applying information extraction tech-
niques over (typically) unstructured text documents [4], and as such are prone to halluci-
nating incorrect facts [32]. On the other hand, graphs produced from general knowledge
bases like Wikidata or DBPedia have their factoids assessed by human annotators to en-
sure their correctness [48], but often incorporate connections that are irrelevant for the
financial domain and are updated infrequently. While both approaches have been tested
in isolation previously, no prior works have quantitatively compared these two different
strategies. This is an important gap, as intuitively the graphs produced by these two
strategies are likely to benefit different types of assets being recommended, introducing
a structured bias. For instance, general knowledge bases result in larger graphs with
imbalanced coverage toward well-known/long standing companies. Meanwhile, news-
based graphs are smaller and more focused on companies that are newsworthy.

Hence, in this work, we tackle the above gap by analysing the impact that these two
knowledge graph construction strategies have when predicting the future profitability
of U.S. stocks. First, we produce a financial knowledge graph containing information
about companies from Wikidata. Second, we build a knowledge graph by applying au-
tomated information extraction techniques over 10K reports using large language mod-
els (LLMs) [39]. As required by the U.S. Securities and Exchange Comission, these
annual reports disclose detailed financial performance and announcements about pub-
licly traded companies to stock investors and unsurprisingly trigger immediate market
responses [15]. We then compare the utility of these knowledge graphs under a uni-
fied profitability prediction framework integrating knowledge graph embeddings [49]
as features for the task. Afterwards, we analyze which types of assets are better pro-
moted by each knowledge graph on the stock recommendation task and, finally, we
propose and test ensemble strategies that adaptively select the best knowledge graph
for scoring different stocks.

Specifically, the primary contributions of this work are fourfold:

– We construct a financial KG from 10K reports using fine-tuned LLMs for open
information extraction.

– We crawl a financial KG from Wikidata as a general knowledge base.
– We compare the effect these knowledge graphs have on profitability prediction over

the U.S. stock market, demonstrating that integrating these KGs can lead up to
10.7% higher in monthly ROI. We also demonstrate that different KG construction
strategies bias their results towards separate sets of assets.

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 3

– We compare two different adaptive graph selection methods that combines two
distinct knowledge graphs for stock recommendation, showing that well-designed
selection criteria can consistently enhance monthly ROI.

2 Related Work

To integrate external evidence into an asset recommendation system using a knowledge
graph as an intermediate representation, we need two technologies: 1) a graph generator,
that takes information about financial topics and extracts associated entities as well as
their relations that form the graph; and 2) an entity embedder, which given an asset
produces a vector embedding that encodes information related to the asset from the
graph. We introduce past works regarding each below:

2.1 Knowledge Graph Generation

The first step in knowledge graph generation is to select the type of content that you
want to extract information from. If producing a new knowledge graph from scratch,
the most popular data source to use is financial news articles, as intuitively significant
events that affect an asset will have associated news content, but conversely much ir-
relevant information will also be captured [13]. Instead, a clean data source such as
financial filings can be used, which is more targeted and in-depth, but are published
infrequently [20,33]. Alternatively, rather than building a completely new graph, some
works have bootstrapped from an existing knowledge-base, such as DBPedia, where a
large general knowledge graph needs to be filtered down to a useful subset for the fi-
nancial domain [48]. To contain the scope for this initial work, we compare approaches
to model what a company (that can be invested in) is and does. As such, we use U.S.
10K financial reports as a company provided overview of their operations and compare
it to company information from WikiData.

Once we have selected our data sources, we next need to extract the entities and
relationships that will form each graph. Depending on the type of data being used, the
approach here will differ. If using an existing knowledge graph, then a set of filter-
ing rules needs to be defined, as well as potentially entity disambiguation performed.
However, for text-based data sources, Information Extraction (IE) techniques need to
be applied to the raw text. This is usually comprised of two components: 1) entity iden-
tification (and linking), which identifies financial entities (companies, people, places) in
the text; and 2) relationship extraction, which generates likely relationship tags between
pairs of entities [33]1. For instance:

Entity1 ‘Nik Jhangiani’, Relationship ‘CFO’, Entity2 ‘Diageo’ (1)

Of note is that for relationship extraction, approaches can be either closed domain (a set
of target relationship types are defined beforehand) or open domain (any relationship tag

1 Relationships may also have extracted properties/qualifiers, such as an indicated date for when
the relationship was formed.

4 L. Guo et al.

can be generated) [19]. While most works focus on closed-domain extraction, the emer-
gence of effective large language models has opened the door to less error-prone open-
domain extraction than was previously possible, with models such as GoLLIE [39]. In
this work, we use GoLLIE over 10K filings to perform open-domain extraction, where
the model is guided to look for either business, transaction or personnel-related rela-
tionships.

2.2 Entity Embedding

Once we have a financial knowledge graph, given a financial asset representing a com-
pany that we want to recommend, we need to produce an embedding representing what
the knowledge graph has about that company. To do this, knowledge graph embedding
(KGE) models are used, which produce a low-dimensional vector representation given
a starting graph node or edge to represent [49]. There are three families of KGE models:

Translation-based Translation-based techniques represent entities as points and rela-
tionships as transformations (translations or rotations) in vector spaces. The idea is that,
if we apply the relation to the head entity vector, the resulting vector will be close to the
tail entity. An early representation of this group of algorithms is TransE [6], which con-
siders relations as translations between head and tail entities in a common embedding
space. As this simple model struggles with one-to-many, many-to-one, symmetric or
transitive relations [37], subsequent models like TransH [37] and TransR [22] introduce
additional spatial dimensions to handle a variety of relations. TransH handles complex
relationships via hyperplane projections, whereas TransR separates entity and relation
spaces. Beyond translations, RotatE [42] represents relations as rotations in a complex
vector space.

Factorization-based Factorization methods on the other hand implement a scoring
function based on semantic similarity to estimate the plausibility of a given triplet, typ-
ically by mining the latent semantics between entities and relations [37]. These models
include RESCAL [31] which leverages three-way tensor factorization techniques and
represents relations as full-rank matrices, outperformed but is computationally demand-
ing. Several methods have made progress in refining the tensor factorization procedure
in comparison to RESCAL, resulting in increased computational efficiency while pre-
serving the ability to handle asymmetric relations. DistMult [54] simplifies the proce-
dure by representing each relation as a diagonal matrix, thus shrinking the parameter
space. TuckER [5] uses Tucker decomposition and combining relations in low-rank
matrices. HolE [30] reduces the number of parameters by employing circular correla-
tion operation.

Neural Network-based Neural networks are considered a promising solution in many
domains since their large number of parameters enable them to learn complicated pat-
terns and also encode weights and biases observed [37]. Therefore, several KGE meth-
ods have taken these algorithms as a basis. ConvE [12] introduces the utilization of
2-dimensional convolutions over embeddings for link prediction. Other models investi-
gate the generalisation power of graph neural networks (GNNs) for the task. An early

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 5

example of these methods is the RGCN model [41], which adapts graph convolutional
networks for their use on link prediction and entity classification on knowledge graphs.
Subsequently, building upon graph attention networks [47], KGAT [51] effectively ap-
plies the attention mechanism for higher-order relation modelling.

In our later experiments, we compare asset embeddings produced by a range of
algorithms across these three types for both 10K filings and Wikidata-based knowledge
graphs.

2.3 Financial Asset Recommendation

Finally, having produced a knowledge graph embedding for a company/asset, we can
then use that embedding to augment a downstream task. In this work, we target Finan-
cial Asset Recommendation as that task, where given a day, we want to rank assets
on that day such that the future return-on-investment of the top ranked assets is max-
imised [2,3,14]. For this, we rely on non-personalized regression models like the ones
used by [35,40]

Similarly to our work, several models have integrated pricing and knowledge graph
information for stock predictions [14,56]. These models either exploit similarities be-
tween assets [23,50,56] or integrate KGs as features [10,11,57]. We explore the second
way. However, previous feature-based approaches need specific KG structures or data
sources to build those KGs. Differently, we propose a simple framework which inte-
grates knowledge graph embeddings as features. This allows the use of any financial
KG as input to our models – something that we can use to compare the effect that
different knowledge graph structures have on the recommendations.

3 Knowledge Graph Construction

In this work, we construct two financial knowledge graphs from two different sources to
compare the performance for financial asset recommendation / stock recommendation.

3.1 Knowledge Graph Definition

We first provide a formal definition of a knowledge graph. Following the property
graph model defined by [16], a knowledge graph G is defined by 5 components G =
⟨E ,L,V,R,P⟩. E is the set of entities in the graph. Entities represent objects, compa-
nies, people or abstract concepts. For instance, the board gaming company Hasbro and
the Dungeons & Dragons (D&D) tabletop game represent entities in a knowledge graph.
L represents the relation labels (types) in the knowledge graph. An example of relation
label is ‘CEO’. V is the set of literal values which can be used to represent properties
of entities and relations, such as a date or a number. The set R ⊂ E × L × E contains
triplets r = (eh, l, et) representing directed links between entities in the knowledge
graph, where eh ∈ E is the origin or head entity, et ∈ E is the destination or tail en-
tity, and l ∈ L represents the type of the relation. An example of a relation would be
r = (Hasbro,CEO,Chris Cocks) – indicating that Chris Cocks is the CEO of Hasbro.

6 L. Guo et al.

CEO

Hasbro

Chris
Cocks

2022

since

NASDAQ
stock

exchange

Wizards of
the Coast

has subsidiary

U.S.A

country

country

product
Dungeons
& Dragons

Magic: The
Gathering

product

is a

Board game
publishing
company

is a
Public

company

legal formS&P 500

part of

since

1997

Nerf

owner of

owned by

President

2016

since

2022

until

country

5

editions

Fig. 1: Example of a knowledge graph.

Finally, P ⊂ (E ∪ R)× L × V is the set of properties of entities and relations. For in-
stance, (D&D, editions, 5) is a property of the D&D entity indicating that 5 editions of
this game have been released, while the tuple (r, since, 2022) referred to the previously
mentioned relation indicates that Chris Cocks has been the CEO of Hasbro since 2022.

We show a graphical representation of an example knowledge graph centered on
the entity Hasbro in Figure 1 – which shows all the aforementioned examples. In the
figure, entities are shown as ellipses. Entity colour represents the type of entity: com-
panies/organizations in blue, people in green, products in brown, financial indexes in
yellow, locations in black and entities representing more abstract concepts in grey. Re-
lations between entities are indicated by continuous arrows, with white boxes showing
the relation type. Dashed arrows represent the properties of an entity/relationship, with
the property label represented by a light blue box with dashed lines, and the property
value as a white box with dashed lines.

3.2 Wikidata graph

Firstly, we extract a financial knowledge graph from a general knowledge base, Wiki-
data [48]. Wikidata includes information about entities in the financial domain that we
can integrate into a graph. However, as Wikidata contains a broad range of information
beyond the financial domain, we need to filter and retrieve the relevant data for our
knowledge graph, following the procedure we detail next.

Seed Entity Matching As a first step, we need to identify some seed entities in Wiki-
data. For this, we take the stocks trading in NASDAQ, NYSE and AMEX at December

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 7

Element Valid types

Entity Organization, Person, Location, Market, Product, Material, Activity, Award, Le-
gal form, Form of government, Gender, Health problem

Relation Ownership, Employment, Part of, Creation, Award, Location, Material, Skills,
Condition, Sequence

Property Time, Position, Location, Item or service, Amount
Table 1: Entity, relation and property types in the Wikidata graph.

2021 as our seed entities, since we aim to predict the future pricing of these stocks. We
employ a semi-automated three-step process to match those companies with entities in
the Wikidata knowledge base:

First, we use the SPARQL Wikidata Query Service2 to filter and retrieve entities
related to the stock exchanges of interest (NASDAQ, NYSE, AMEX) and gather their
identifiers, names, and aliases in multiple languages. If a direct match between the com-
pany tickers and Wikidata entries is found, we link them automatically. Second, for as-
sets without direct matches, we use DBpedia Spotlight [25] for entity recognition and
linking to entries in DBPedia (another public knowledge base), which are then cross-
referenced to Wikidata identifiers. We verify the results manually to ensure accuracy.
Finally, for any unmatched entities, we conduct a manual search in Wikidata. If a com-
pany does not match any entity, it is excluded from our dataset, assuming no association
with Wikidata exists. We started with a total of 5,823 assets from NASDAQ, NYSE and
AMEX. Via entity matching we mapped 3,370 of these (57.9%) to Wikidata pages.

Entity and Relation Extraction Starting with mapped Wikidata entries, we extract
metadata, relations, and properties for each entry, including any available temporal in-
formation for the relations. Our crawling method follows a breadth-first search algo-
rithm, beginning with seed entities and expanding outward in a first-found, first-served
manner. To avoid crawling information outside the financial domain, we cap the search
depth from the seed entities. Furthermore, we have specified a list of valid financial
relations and entity types to guide our crawler. The broad types of those entities and
relations are summarized in Table 1.

3.3 10K reports graph

Second, we create a graph from financial texts using automated relation extraction. In
this work, we construct our automated knowledge graph using some of the most com-
prehensive and official financial reports: the 10K annual filings. We next provide details
of our information extraction procedure.

Pre-processing Considering that financial reports are lengthy and exceed the context
window of the LLM we use, we initially perform sentence segmentation on each report,

2 https://query.wikidata.org/

8 L. Guo et al.

@dataclass

class BusinessEvent(Event):

 """A BusinessEvent refers to actions related to Organizations such as: creating, merging, acquiring,

 owning another organization, declaring bankruptcy or ending organizations (including government agencies)."""

 mention: str

 """The text span that most clearly expresses the event.

 Such as: "started", "open", "create", "closing", "merged"

 """

 subject_organization: str # Initiator or primary organization in the event.

 object_organization: Optional[str] = None # Receiver or secondry organization in the event.

 location: Optional[str] = None # Where the event takes place

 point_in_time: Optional[str] = None # Descriptive or vague moment of the event, not intended for direct

 comparison with start_time or end_time

 start_time: Optional[datetime] = None # The precise starting datetime of the event

 end_time: Optional[datetime] = None # The precise ending datetime of the event

Event definition

Input text

Output facts

IN
PU

T
O

U
TP

U
T

On April 25, 2014, Microsoft acquired substantially all of Nokia Corporation’s Devices and Services business

(“NDS”).

[

 BusinessEvent (

 mention = "acquired",

 subject_organization = "Microsoft",

 object_organization = "Nokia Corporation",

 point_in_time = "April 25, 2014"

)

]

Event description
annotation

Event attributes

Fig. 2: An example of extracted hyper-relational facts

converting it into a list of sentences using Stanford NLP [34]. This enables us to gen-
erate hyper-relational facts. Furthermore, as in most reports, terms such as ‘we’, ‘the
company’ and ‘the corporate’ refer to the reported company, as such we resolve/replace
these with their corresponding company names.

Entity and Relation Extraction Our information extraction pipeline is based on GoL-
LIE [39]. GoLLIE is a recent LLM-based model for zero-shot information extraction
(IE). This model has been successfully applied to multiple IE tasks across multiple do-
mains, so we use it in our work to extract financial entities and relations from the 10K
filings. This model is based on Code-LLaMA [38] and represents both input and output
using Python classes. It receives two inputs: first, a text from which to extract informa-
tion, a second, a list of Python class definitions describing the information to extract.
For each label, there is a Python class detailing its structure (where class attributes rep-
resent specific information pieces to extract). Extraction guidelines are embedded as
comments in the Python class to assist the model. The output of the model is a list of
instances of the pre-defined Python classes, each containing a pair of entities, a relation
and any relevant properties.

In our information extraction procedure, we perform event argument extraction to
produce hyper-relational facts using event templates provided for GoLLIE3. We define
three types of events to extract:

3 https://github.com/hitz-zentroa/GoLLIE/blob/main/notebooks/
EventExtraction.ipynb

https://github.com/hitz-zentroa/GoLLIE/blob/main/notebooks/Event Extraction.ipynb
https://github.com/hitz-zentroa/GoLLIE/blob/main/notebooks/Event Extraction.ipynb

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 9

Entity Valid Type

Head Entity & Tail Entity Organization, Person
Property Label Time, Position, Location, Item or service, Amount

Table 2: Entity types in the 10K graph.

– Business event: actions related to organisations. For instance, creating, acquiring
or ending other organisations as well as declaring bankruptcy.

– Transaction event: this event type refers to exchanges between organisations, ei-
ther of artefacts, people or money.

– Personnel event: interactions between people and organisations. For instance, foun-
dation of a company, or election of a person for a position.

All of these events are represented by a hyper-relational fact (eh, lr, et, lp, v), where
eh, et ∈ E are the head and tail entities, lr is the label indicating the type of the relation
between them and, if any, lp represents the type of a link property with v as the property
value. For each event type, we define the types of the entities, and allow the model
to extract the relation types. We broadly classify the link properties into five groups:
‘time’, ‘position’, ‘location’, ‘item or service’ and ‘amount’.

Figure 2 shows an example of the input and output of the model. In the predefined
‘BussinessEvent’ data class, we first provide a text describing the types of events we
want to extract as a comment. In order to capture the business facts related to organiza-
tions, we define the head entity as ‘subject organization’, and tail entity as ‘object or-
ganization’, adding location and time as properties. As it is common that the extracted
facts may not always include all the components we thus define Optional typings to
handle diverse matching patterns. This example demonstrates an extracted ‘Busines-
sEvent’ instance from the input text, with ‘Microsoft’ as the head entity and ‘Nokia
Corporation’ as the tail entity. The relationship between them is described by the term
‘acquired’, with ‘April 25, 2014’ serving as the only time-related property.

Relation Clustering The identified relational phrases are continuous text spans directly
extracted from the sentence, which tend to be noisy. Therefore, additional steps are
needed to match different relation types. Inspired by Hu et al. [17], we use clustering to
group similar relational facts in an unsupervised manner.

We first perform lemmatization on the extracted relations to reduce variations in
their word representation. To perform the clustering, we represent the relation mentions
as vectors using the Sentence-BERT pretrained language model [36]. This enables us
to establish distances between relation phrases, which we can use to perform the clus-
tering. Then, we use agglomerative clustering [26] to group the vectors and combine
similar relations – thus shrinking the number of different relations in our knowledge
graph. We use this simple and hierarchical algorithm as it allows us to establish a dis-
tance threshold for grouping instead of a number of clusters – something that aligns
well with our open information extraction task. In our configuration, we consider that
two vectors with distance (within-cluster variance) smaller than 1 belong to the same

10 L. Guo et al.

cluster. Finally, to further refine our dataset with higher qualified relations, we exclude
relations that occurred with a frequency below the 75th percentile threshold for the
entire collection (6 times in our data).

Entity Linking Similar to extracted relations, the entities extracted from texts are text
spans that need to be unified and linked to real-world entities. Given the difficulty in
accurately mapping individual names, we only focus on organisations. We apply two
methods. First, we use a zero-shot entity linking method based on BERT known as
BLINK [53]: this approach matches spans of text to entities in Wikipedia. Second, we
use the company name normalisation functionality of the John Snow Labs NLP library4

This feature maps extracted company names to the name registered with the SEC in the
Edgar Database, which is useful when handling 10K filings and aims to enhance the
accuracy of linking organisational entities.

Both methods provide, as outputs, an entity name and a confidence score. To ensure
reliability of the collected entities, for each method, we only keep those text-entity pairs
with confidence scores above the median score obtained for all the analysed text spans.
We keep the matching if the confidence score for one of the two methods is above the
median for the entity linker. In case we have positive matchings for a company in both
methods, we keep the one provided by BLINK.

4 Profitability Prediction with Knowledge Graph Embeddings

After constructing our financial knowledge graphs, we aim to use them to improve price
prediction accuracy, where future predicted prices are used to recommend financial
assets. We therefore define a simple aggregation framework that enables us to combine
knowledge graph information with temporal pricing information, depicted in Figure 3.

For a point in time t, given a set of financial assets, we first feed the gathered knowl-
edge graph into a knowledge graph embedding (KGE) model. These models produce
embeddings summarizing the information we have about the entities representing the
assets in the knowledge graph. Separately, the historical price data is processed to create
the technical indicator sequence for each stock. Both technical indicators and knowl-
edge graph embeddings are then concatenated and given as input to a profitability pre-
diction method that estimates the future profitability of the assets and then ranks them
in descending order according to that estimation.

This is a classical feature aggregation approach that has previously been shown to
be effective in a wide range of scenarios and so we won’t discuss it further. Rather,
in the remainder of this section we describe how the two types of features (technical
indicators and entity embeddings) are generated in more detail and provide a general
definition of the profitability prediction regression algorithms.

4.1 Asset vector generation

As a first step to perform profitability prediction, we need a representation of the dif-
ferent financial assets that we want to predict for. There are two types of information

4 https://github.com/JohnSnowLabs/johnsnowlabs

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 11

…

…

…

…

Stocks

Technical
indicator

generation

Embedding
model

Asset technical
indicators

1

2

3

N

…

…

…

…

Asset entity
embeddings

1

2

3

N

…1

2

3

N

…

ROI
Prediction

Asset ranking

1.0

0.5

…

0.1

-0.8Asset vectors

time 𝑡

n

m

n+m

Asset vector generation

Pricing data

Knowledge
graph

… …

… …

… …

…

…

…

Fig. 3: Profitability Prediction Architecture

that we consider in this work to represent assets: 1) asset past technical data (i.e. infor-
mation derived from the price of an asset over time); and 2) information regarding the
company associated to the asset (based on our knowledge graph). Notably, these asset
features will vary over time, as market pricing is updated frequently and information
about the company gets updated periodically.

Given a particular time, t, we represent a stock s ∈ S as a numerical vector of
dimension D, which we denote as s(t) ∈ RD. In our framework, s(t) is defined as

s(t) = sTI(t)⊕ sKG(t) (2)

where sTI(t) ∈ Rn is a vector containing technical indicators for the asset s at time
t, with n representing the number of indicators and sKG(t) ∈ Rd is a d-dimensional
embedding of the entity representing the asset in the knowledge graph at time t. We
provide more information about these vectors next.

Technical indicators Technical indicators (also known as key performance indicators,
KPIs) are heuristics that encode some aspect of the past pricing information of a finan-
cial asset. These heuristics have been shown to provide useful signals when predicting
the future profitability of financial assets [28], and are widely used when training price
prediction models [27,28,40]. Technical indicators do not commonly analyse the whole
time series before a given time t. Instead, they usually summarize a fixed period of time,
given by a window ∆t. Examples of technical indicators include the average price of a
stock during a period of time, the return on investment of the stock in the last month, or
the volatility of the asset price (standard deviation of the stock price between two points
in time).

We can mathematically define a financial technical indicator as a function f : S ×
R+ × R+ → R. This function receives as an argument (a) the price time series of an
asset s ∈ S , (b) the time t and (c) the time window ∆t. The technical indicator studies
then the time series s[t−∆t, t] (i.e. the pricing information of the asset between t−∆t

12 L. Guo et al.

and t) and provides a numerical value. In our framework, we define a technical indicator
vector as:

sTI(t) = {fi (s, t, (∆t)i)}
n
i=1

(3)

where {fi}ni=1 represents the technical indicators to use and (∆t)i represents the time
window chosen for the technical indicator fi. We allow the use of different time win-
dows as the value and meaning of an indicator might differ according to ∆t. For in-
stance, the technical indicator [return on investment (ROI)] for the prior 1 week may
tell us something different than [return on investment (ROI)] for the prior year. The set
of technical indicators used are summarized later in Table 4.

Asset entity embeddings Knowledge graph embedding (KGE) models aim to encode
the information in the knowledge graph into a low dimensional space, with each en-
tity in the graph represented by an embedding vector, while preserving the important
properties of the graph [8]. Entity embeddings are computed considering not only the
information about each entity, but also that entity’s relationship with other entities in
the graph (thereby encoding information about related assets and relations within the
embedding). In this work, we experiment with a range of methods for generating knowl-
edge graph embeddings for our financial assets that we use downstream as features for
profitability prediction.

An important consideration here is that entities and relations might appear and dis-
appear over time, and, if we are predicting the price of stocks at a given point in time t,
we should not have any information in the knowledge graph that appeared after time t
(i.e. we need to avoid including information from the future). For instance, if we predict
the profitability of NASDAQ stocks in 2003, we should not have any information about
Meta or Twitter (which were founded, respectively, in 2004 and 2006). Using the prop-
erties of the entities and relations, we can remove future information from the graph.
We define the knowledge graph containing only information before time t as G(t).

Formally, we want to produce a representation of an asset s as a vector sKG(t)
containing the embedding of the entity related to that asset in the knowledge graph. We
can formulate a KGE model as a function g : G → E × Rd where G is a knowledge
graph, E is the set of entities and d is the dimension of the embedding space. If we
denote the entity associated to asset s in the knowledge graph G(t) as es, we can define
sKG(t) ∈ Rd as the vector embedding of es in the knowledge graph G(t):

sKG(t) = g (G(t)) [es] (4)

In order to generate those embeddings, KGE models establish an scoring function
gs : E × L × E → R for every possible triplet (eh, l, et), denoting the plausibility of
every relation. The learning process of these models preserves the structure of the graph
by maximizing that scoring function for the existing relationships R.

There are many knowledge graph embeddings models that have previously been
proposed, as discussed previously in Section 2.2. However, to-date these models have
not been compared on the profitability prediction task. Hence, we select a representa-
tive set of both popular and state-of-the-art models from the literature and experiment
with them our later experiments. While exhaustively describing each embedding model

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 13

is out-of-the-scope of this work, we provide a brief formulation of each KGE model
we use below to highlight the differences between them, where |E| denotes the num-
ber of entities, |R| denotes the number of relations, d denotes the dimension of the
embeddings and, to simplify the notation, eh and et represent here, respectively, the
embeddings of the head and tail entities:

Translation-based embeddings

– TransE [6]: this method represents relations as translations between entities in the
same embedding space. The tail entity vector et should be near to the head entity
vector eh plus the relation vector l, i.e., eh + l ≈ et. Hence, we use as scoring
function gs to optimize the negative L1-norm distance between eh + l and et:

gs(eh, l, et) = −∥eh + l − et∥1
– TransH [52]: TransH extends TransE by representing relations as vectors in a d−1-

dimensional hyperplane with normal vector wl. This method projects the entity
vectors eh and et, respectively, onto the hyperplane as:

e⊥h = eh − w⊥
l ehwl

e⊥t = et − w⊥
l etwl

Hence, the relation vector l is thus regarded as the connection between e⊥h and e⊥t
in the hyperplane, and the scoring function gs to optimize is then defined as:

gs(eh, l, et) = −∥e⊥h + l − e⊥t ∥22
– TransR [22]: TransR breaks the restrictive assumption of TransE and TransH that

entities and relations live in the same semantic space. Instead, it represents them in
distinct vector spaces by projecting entities (eh, et ∈ Rd) to relation space using a
projection matrix Ml ∈ Rk×d.

elh = ehMl

elt = etMl

With l ∈ Rk, the scoring function gs to optimize is defined as:

gs(eh, l, et) = −∥elh + l − elt∥21
– RotatE [43]: RotatE represent each relation as an element-wise rotation from the

head entity to the tail entity. This method expects that

et ∼ eh ◦ l, where ∥li∥ = 1∀i ∈ {1, ..., d|

where ◦ represents the Hadamard product and relations are represented as vectors
l ∈ Cd in the complex d-dimensional sphere of radius equal to 1. The scoring
function gs for each relation is then defined as:

gs(eh, l, et) = −∥eh ◦ l − et∥

14 L. Guo et al.

Factorization-based embeddings

– RESCAL [31]: RESCAL employs tensor factorization to model latent entity rep-
resentations and their interactions. Entities are represented as vectors, while every
relation l is represented as an asymmetric matrix L ∈ Rd×d. The scoring function
is defined as:

gs(eh, l, et) = eTh · L · et
– HolE [30]: HolE combines the advantages of RESCAL and TransE and improves

efficiency by using the circular correlation operator *: Rd × Rd → Rd , which can
be seen as a compression of the tensor product that does not increase the dimen-
sionality of the representation. The scoring function is then defined as:

gs(eh, l, et) = σ(lT (eh ∗ et))

where l is a vector in Rd representing the relation.
– TuckER [5]: Based on Tucker decomposition[46], TuckER decomposes the binary

tensor representation of the knowledge graph into two factor matrices (E ∈ R|E|×d,
L ∈ R|L|×dl) and a core tensor W ∈ Rd×dl×d. E represents the head/tail entity em-
bedding matrix, L represents the relation embedding matrix, and W indicates the
level of interaction between the different factors and contributes to the parameter-
sharing ability. Its scoring function is defined as:

gs(eh, l, et) = W ×1 eh ×2 l ×3 et

where eh, l, et are the rows of corresponding factor matrices, and ×i denotes the
mode-i tensor product.

Neural network-based embeddings

– ConvE [12]: ConvE takes advantage of convolutional neural networks (CNNs) for
computing the embeddings. This method models the complex interactions between
subject entities and relations by using convolutional and fully-connected layers. It
first applies a two-dimensional convolution layer with filters ω on reshaped and
concatenated head entity and relation embeddings, ēh and l̄ denote a 2D reshaping
of eh and l, respectively. The resulting feature map tensor is then vectorized and
projected into d-dimensional entity space using a linear transformation by W and
matched with the et via an inner product. The scoring function is defined as:

gs(eh, l, et) = f(vec(f([ēh; l̄] ∗ ω))W)et

– RGCN [41]: RGCN is an extension of a graph convolutional network (GCN) [21]
that applies relation-specific transformations by replacing the weighting scheme in
which all edges have the same value with a weight that varies depending on the
relation type. It consists of the RGCN encoder, which computes entity represen-
tations, and the DistMult[54] factorization scoring function. Scores for each triple
are defined as:

gs(eh, l, et) = eWh · L · eWt
where W is the final level of the encoder, and L ∈ Rd×d is a diagonal relation
matrix.

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 15

4.2 Profitability prediction

Once we have the vector representation for the assets at time t, we train a regression
model to estimate the future profitability of the assets. Formally, the regression model
acts as a function h : RD → R, which receives the feature vector of an asset s at time t
and estimates the return of investment of the asset at time t+∆t. (where ∆t is the time
window we want to predict for). Notably, any regression model can be used here: from
simple methods like linear regression or random forest to more complex approaches like
long short-term memory networks (LSTMs) or gated recurrent units (GRUs). Finally,
as most downstream use-cases for price prediction involve finding the most profitable
assets, we rank all assets by their predicted profitability (in descending order).

As we are in a temporal scenario where we can only train using data prior to the time
we are to produce predictions for, given a prediction time t, we train a model using asset
feature vectors for different time points preceding t (with the end of the training period
referred to as ttrain). For example, given a training vector for an asset s computed for
the training time point t − 1y (1 year before the prediction time), its regression target
is the return on investment (ROI) between t − 1y and t − 1y +∆t, i.e. the percentage
change in closing price over the ∆t period starting at t − 1y. Note that training time
points ttrain must be less than or equal to t −∆t to avoid requiring information from
the future when evaluating. Return on investment is calculated as follows:

ROI(s, t,∆t) =
Close(s, t+∆t)− Close(s, t)

Close(s, t)
(5)

where Close(s, t) represents the closing price of s ∈ S at time t. As the loss function
for our regression algorithms, we use the squared error:

L =

ttrain−∆t∑
t=t0

∑
s∈S

(ROI (s, t,∆t)− h (s(t)))
2 (6)

where t0 is the initial time.

5 Experimental setup

To assess the effectiveness of the two constructed knowledge graphs in predicting stock
market profitability, we carry out experiments using U.S. stock market data. Here, we
detail the dataset and the experimental setup used for our analysis.

5.1 Dataset

To conduct our experiments, we collected a dataset from three major U.S. stock ex-
changes: NASDAQ, NYSE, and AMEX.
Pricing data: We collect daily pricing data from Yahoo! Finance5 including open,
close, high, low, and volume prices for 5,823 assets from January 2018 to September
2022.

5 http://finance.yahoo.com

http://finance.yahoo.com

16 L. Guo et al.

Wikidata graph: Using the approach described in Section 3.1, we collected 3,370 as-
sets entities from Wikidata, resulting in more than 100k entities and 450k relations
crawled for our knowledge graph. Table 3 summarises the total properties of the crawled
Wiki graph.

Property Wikidata 10K

Number of entities 102,739 8,380
Number of relation types 114 450
Number of links 457,758 36,973

Table 3: Graph Properties

10K graph: We successfully retrieved 2,264 assets with 10K reports6 based on the
linked assets in the Wikidata graph, resulting in 5,399 filings from 2017-2022. We in-
corporated an additional year of data prior to 2018 to ensure a rich dataset for construct-
ing the initial knowledge graph. Table 3 summarizes the global 10K graph properties.
Dataset split: For each time point, technical indicators and knowledge graph versions
from prior dates are used as input to predict price changes over a six-month horizon
(∆t). For our experiments, time points on or before the 31st of December 2019 are
used for training and the six months following the 30st of June 2020 are used for test-
ing, maintaining a six-month gap between those sets to avoid data leakage. Within the
dataset, time points are spaced 1 week apart, selecting the Monday of each week as t.
In total, the training set includes 73 time points, while the test set contains 25.
Dataset post-processing: To ensure data consistency and reduce discrepancies, we take
the intersection of assets listed in the pricing data, Wikidata entities and 10K reports.
This results in 2,042 assets for our training set and 2,096 assets for our testing set. We
also exclude 421 upper outliers from our test set when profits exceed 1.5 times the in-
terquartile range above the third quartile, which indicate unusually high profits. These
outliers include penny stocks, companies coming back from bankruptcy, and phenom-
ena like the 2021 meme stock trading (e.g., GameStop). Including these assets leads
to unstable evaluations, as their presence among the top-ranked assets can significantly
skew metrics like ROI@10.

5.2 Metrics

In order to evaluate our predictions, we consider two different metrics: 1) a ranking-
oriented metric, monthly return on investment (ROI), and 2) a global error metric, root
mean squared error (RMSE). We summarise each below:

– Monthly return on investment (ROI@k): we analyse the average monthly return
on investment over the top k ranked assets. In our experiments, we take k = 10 and
compute the ROI over the 6 months following the date of the recommendations.

6 https://sec-api.io/

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 17

Table 4: Summary of financial technical indicators

Indicator (financial days) Time period ∆t

Average price 28, 63, 126
Return on investment 28, 63, 126
Volatility 28, 63, 126
Momentum 14, 21, 28
Moving average convergence divergence 26
Rate of change 14, 21, 28
Relative strength index 14
Detrended close oscillator 22
Force index 1
Minimum 14, 21, 28
Maximum 14, 21, 28
Chaikin oscillator 10
Average true range 14
Average directional index 14
Vortex indicator 14

– Root mean-squared error (RMSE): To understand the model accuracy, we com-
pute the square root of the average squared difference between predicted and real
ROI.

5.3 Model Configuration

Technical indicators: In our experiments, we use 16 different KPIs derived from the
pricing time series as technical indicators, summarized in Table 4. In order to generalise
the comparison of two knowledge graphs, and reduce the influence of KPIs on the
comparison result, we have chosen two groups of technical indicators:

– BasicKPIs: average price, return on investment, and volatility.
– AdvKPIs: all KPIs in Table 4.

Knowledge graph embeddings: We select a set of both popular and state-of-art KGE
models for the experiment, specifically, 9 KGE models are tested:

– Translation-based embeddings: TransE [6], TransH [52], TransR [22] and Ro-
tatE [43]

– Factorization-based embeddings: RESCAL [31], HolE [30] and TuckER [5]
– Neural network-based embeddings: ConvE [12] and RGCN [41]

We use the PyKeen library [1] to generate 50-dimensional embeddings for entities
(companies) associated with each asset. We repeat embeddings generation 5 different
times to analyse the variability across the runs. However, we use just one random seed
for the RGCN model due to its high computational cost.

Regression Model We opt to use a Random Forest regression algorithm with 100 trees
as our prediction model.

18 L. Guo et al.

BasicKPIs AdvKPIs

ROI@10 RMSE ROI@10 RMSE

Group Algorithm 10K Graph Wikidata 10K Graph Wikidata 10K Graph Wikidata 10K Graph Wikidata

Baseline (Only KPIs) 0.010 0.4574 0.0466 0.4299

Translation-based models

KPIs + TransE 0.04540.04540.0454∗ 0.0368 0.4439† 0.4415† 0.0474∗ 0.0393 0.4277† 0.4289
KPIs + TransH 0.0409 0.0419 0.4408† 0.4383† 0.0467 0.0434 0.4257† 0.4275
KPIs + TransR 0.0435 0.0422 0.4442† 0.4385†∗ 0.0442 0.0454 0.4276† 0.4259†

KPIs + RotatE 0.0427∗ 0.0385 0.4423† 0.4371† 0.0472∗ 0.0403 0.4254† 0.4256†

Factorization-based models
KPIs + RESCAL 0.0418 0.0418 0.4474† 0.4439†∗ 0.0451 0.0447 0.4329 0.4243†∗

KPIs + HolE 0.0418 0.0407 0.4448† 0.4353†∗ 0.0441 0.0442 0.4285 0.4239†∗

KPIs + TuckER 0.0400 0.0409 0.4442† 0.4334†∗ 0.0412 0.0445∗ 0.4298 0.4226†∗

Neural network models KPIs + ConvE 0.0407 0.0450∗ 0.4433† 0.4304†∗ 0.0435 0.0451 0.4269† 0.4207†∗

KPIs + RGCN 0.0423 0.0447 0.4479† 0.4192†∗0.4192†∗0.4192†∗ 0.0423 0.0502∗0.0502∗0.0502∗ 0.4322 0.4126†∗0.4126†∗0.4126†∗

Market 0.0345 - - 0.0345 - -
S&P 500 0.0266 - - 0.0266 - -

Table 5: Performance of random forest regression methods with assets embeddings derived from
two knowledge graphs, when predicting six months into the future. The best value for each al-
gorithm and metric is highlighted in bold. † denotes significant improvements (Wilcoxon test
p < 0.05) with respect to the only KPIs baseline. ∗ indicates significant improvements compared
to the corresponding graph model for the other graph.

6 Results

In this section we compare the impact of incorporating two distinct knowledge graphs
sourced from Wikidata and 10K reports on the prediction of asset profitability. In par-
ticular, we investigate the following research questions:

– RQ1: How does the use of the Wikidata and 10K graphs affect the effectiveness of
profitability prediction?

– RQ2: How different are the profitable assets recommended for each knowledge
graph?

6.1 RQ1: Graph Performance Comparison

We begin by examining the core question posed in this work: how do knowledge graphs
derived from financial reports vs. a knowledge base affect financial asset recommenda-
tion (FAR) effectiveness? In particular, we would like to know whether one knowledge
graph provides more useful information than the other, and whether the approach used
to embed the graph for each company impacts performance.

To answer this question, we compare FAR approaches with and without knowledge
graph embeddings. In particular, we start with a price-prediction-based baseline referred
as Baseline (Only KPIs), which uses past pricing data to predict the future price of an
asset. For a day, all assets are ranked by their predicted return-on-investment (ROI) after
6 months. To evaluate performance, we report both error between the prediction and ac-
tual ROI (RMSE, lower is better) and the actual (monthly) ROI of the top 10 recommen-
dations (ROI@10, higher is better). We have two baseline variants, denoted BasicKPIs
and AdvKPIs, where the latter includes more technical indicators. As we can see from

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 19

Table 5, the baseline models achieve an ROI@10 of 4.1% (BasicKPIs) to 4.66% (Ad-
vKPIs), which is higher than both the market average (Market) and S&P 500 (a common
index benchmark) for the same period (also reported at the bottom of Table 5).

Having established our baseline, we now contrast this baseline to the same model
when augmented with the embeddings derived from our two knowledge graphs. In Ta-
ble 5, for each metric, we include two columns (10K Graph and WikiData) report-
ing performance when the baseline is augmented by each knowledge graph. As there
are a range of possible graph embedding techniques (see Section 4.1), we include one
row for each embedding technique tested, denoted KPIs + <KGE> (where <KGE>
is a knowledge graph embedding approach, e.g. TransE). The best metric values are
highlighted in bold, and statistically significant increases (pairwise Wilcoxon test at
p < 0.05) in comparison to the Baseline (Only KPIs) model is denoted †. We also high-
light significance differences between the application of the same model on the two
knowledge graphs as ∗.

The first observation is that integrating KGE for profitability prediction generally
results in RMSE reductions with respect to the baselines (33/36 times). In 30 cases, this
reduction is significant, thus showcasing the capability of knowledge graph information
to generate more accurate predictions. When comparing both graphs, the Wikidata KG
obtains lower errors in 15 out of 18 cases (with 11 of them showing a significant differ-
ence) – therefore showing that this graph provides more accurate results than the 10K
graph.

We observe a different pattern when we study the return on investment over the
top-10 ranked results however: even when most methods using KGE reduce the pre-
diction error, this fact does not necessarily result in more profitable recommendation
rankings. This is particularly notable for the methods using the larger set of indica-
tors, where only four models beat the baseline (TransE, TransH and RotatE for the 10k
graph and RGCN for the Wikidata graph). However, for both baselines, it is possible
to find at least one model for each graph improving its profitability. In the case of the
BasicKPIs baseline, the best models are TransE for the 10K graph (4.54% ROI@10)
and ConvE for the Wikidata graph (4.47% ROI@10). For AdvKPIs, TransE is again
the best for the 10K graph (4.74% ROI@10), whereas RGCN is the best for Wikidata
(5.02% ROI@10). This illustrates that both knowledge graphs are capable of providing
a useful profitability signal for the task.

When we compare the effectiveness of the graphs in terms of ROI@10, we also see
that there is a different relationship between the complexity of the embedding approach
and ROI gain across the two graphs. Specifically, the 10k graph yields higher ROI for
the translation-based algorithms (particularly the simpler TransE and RotatE models)
that perform poorly when applied on Wikidata. Meanwhile, for the most complex of
tested algorithms (TuckER, and both neural network approaches, ConvE and RGCN),
the Wikidata graph provides a stronger profitability signal. According to Table 3, the
Wikidata graph contains approximately ten times the number of entities and links as the
10K graph, indicating a greater complexity and graph size. Although the simple knowl-
edge graph embedding models are capable of providing useful summaries of the 10k
graph information, we hypothesize that the more complex knowledge graph embedding
models (specially those based on neural networks) need a much larger number of links

20 L. Guo et al.

Basi
c m

ate
ria

ls

Re
al

est
ate

Hea
lth

car
e

Con
sum

er
cyc

lica
l

En
erg

y

Tec
hn

olo
gy

Fin
an

cia
l se

rvi
ces

Com
mun

ica
tio

n s
erv

ice
s

Ind
ust

ria
ls

No c
ate

go
ry

Con
sum

er
de

fen
siv

e

Utili
tie

s

Sectors

0
20
40
60
80

100
120
140

Co
un

ts

Baseline (Only KPIs)
10K Graph (TransE)
Wikidata Graph (RGCN)

Fig. 4: Distribution of profitable assets in the top-10 recommendation rankings across sectors.

to learn how to extract stronger profitability signals from knowledge graphs – hence
why RGCN performs well on Wikidata but not the 10K filings.

To answer RQ1: Both knowledge graphs are capable of enhancing the accuracy of
the predictions – with Wikidata achieving better results. If we look at returns, however,
it highly depends on the embedding method used. The simpler translation-based meth-
ods favour the use of the smaller 10K graph, whereas the most complex neural-based
methods require more information to work, which they can obtain from the Wikidata
graph.

6.2 RQ2: Profitable Asset Sector Analysis

Besides raw algorithm performance, we hypothesize that different knowledge graph
construction methodologies lead to the promotion of specific types of assets in the
recommendations. For instance, general knowledge graphs might promote well-known
companies as they have more information about them. As studying these differences
is important to understand the inner workings of these methods, we provide a prelimi-
nary analysis where we study the distribution of recommended profitable assets across
sectors.

To perform this analysis, we identify assets with positive ROI in the top-10 of the as-
set rankings and count how many times each sector is represented. We compare two top
performing models using the basic indicators: TransE for the 10K graph, and RGCN for
the Wikidata graph. Although ConvE provides slightly better performance when using
the basic KPIs for the Wikidata graph, we choose RGCN as it is the best overall method
for this KG. Both BasicKPIs + TransE (10k) and BasicKPIs + RGCN (WikiData) pro-
vide similar ROI@10 values (4.54% vs. 4.47%), but we hypothesise that source of that
profitability might be different.

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 21

Figure 4 displays the results of our experiment, where the x axis shows the different
sectors and the y axis shows the number of profitable assets for each algorithm and sec-
tor. In the plot, we also include the baseline using only technical indicators as features,
for comparison. For many of the sectors (basic materials, consumer cyclical, energy),
similar numbers of profitable assets are selected by both graphs, but there are sectors
which highlight the differences between both knowledge bases.

The most important is the healthcare sector. In our data, the studied test period
(June-December 2020) runs during the Covid-19 pandemic. Due to the pandemic, the
value of healthcare in this period rose. This is observable in our results, as it is the
sector counting the biggest number of profitable assets for the three compared models.
However, it is the models using the 10K graph that recommends more assets from this
sector. Considering that 10K filings contain company projection information, in this
case, they enable the model to capture company outlooks on the Covid-19 pandemic and
exploit them – something that the Wikidata graph, containing more general information,
does not, as it even reduces the number of profitable healthcare recommended assets
with respect to the baseline. Instead, the Wikidata graph takes its improvements from
other sectors, like technology or utilities, for which the graph might contain more data.

To answer RQ2: The knowledge graph construction strategy markedly impacts the
types of assets recommended and this appears to be driven by the types of relation-
ships and properties captured within each graph, although further investigation will be
needed to conclusively show this.

7 Adaptive Graph Selection

The differences on sector-level performance across knowledge graphs observed in Sec-
tion 6.2 suggest that each knowledge graph may be better suited to predict the profitabil-
ity of specific types of stocks. Motivated by this observation, we investigate whether
adaptively selecting the suitable graph for each stock can improve profitability. To an-
alyze this, we propose an ensemble method that switches between knowledge graph-
based models depending on the stock.

7.1 Algorithm description

We propose a switching ensemble model [7] for profitability prediction, that adaptively
selects a previously trained ROI prediction algorithm for each stock. We show the archi-
tecture of the ensemble in Figure 5. The ensemble chooses among the possible models
following their performance on the training set. We consider two possible strategies for
choosing the model for each individual stock:

– Stock-level strategy: Given a stock, we choose the profitability prediction algo-
rithm that minimizes RMSE during the training period.

– Sector-level strategy: All stocks within a sector are assigned to the same prof-
itability prediction model – the model minimizing the average RMSE of the sector
stocks during the training period.

22 L. Guo et al.

Stock

Wikidata
ROI Prediction

10K reports
ROI Prediction

10K reports
knowledge graph

Pricing data

window size 𝑤

R
ecen

cy
filter

𝑡𝑡𝑟𝑎𝑖𝑛𝑡𝑡𝑟𝑎𝑖𝑛 − Δ𝑡 − 𝑤𝑡𝑡𝑟𝑎𝑖𝑛

time 𝑡

M
o

d
el se

lecto
r

Training data Filtered data

Predicted
ROI

𝑡0

Wikidata
knowledge graph

Fig. 5: Architecture of the adaptive ensemble.

While using the complete training data for the model selector is a possibility, in
the financial sector, the time of the input information matters. We hypothesize that,
by choosing the most recent training points, the performance of our ensemble model
should increase. To deal with this, we apply a recency filter to our training data. This
filter receives as input a window size w (measured in weeks). If we define ttrain as
the end of the training period, this recency filter keeps the training time points in the
(ttrain −∆t− w, ttrain) period.7

7.2 Experiments

We compare our adaptive method under the same experimental setup defined in Sec-
tion 5. To build our ensemble, we use the best-performing KPIs + <KGE> model for
each knowledge graph as the baseline: TransE for the 10K graph and RGCN for the
Wikidata graph. We also include these two models as baselines in our experiment.

For our ensembles, we experiment with multiple window sizes, ranging from 1 to 78
weeks (corresponding to 73 data points, as some holidays were excluded). This window
selection allows us to assess how the length of historical windows for graph selection
affects recommendation effectiveness.

7 As the last time point of the training period is at ttrain −∆t, we take the starting point of the
windowed period as ttrain −∆t− w to take all the examples within a period of length w.

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 23

0 20 40 60 80
Recency Windows (Weeks)

0.044

0.046

0.048

0.050

0.052
RO

I@
10

0 20 40 60 80
Recency Windows (Weeks)

0.044

0.046

0.048

0.050

0.052

RO
I@

10

Sector-level Stock-level 10K Graph (Best) Wikidata (Best)

(a) BasicKPIs (b) AdvKPIs

Fig. 6: Comparison of ROI@10 Across Different Graph Selection Strategies

7.3 Results

In this section, we examine the influence of adaptive graph selection strategy on asset
recommendation performance. Specifically, we focus on the following research ques-
tions:

– RQ3: How does the adaptive combination of two knowledge graphs impact the
effectiveness of investment profitability?

– RQ4: How does the choice of recency window length affect the proportion of each
graph selected?

RQ3: Dynamic Selection Performance We begin by addressing the key question in
the section: whether dynamically choosing the predicted best graph for each stock or
sector can enhance profitability in asset recommendation. Thus, we compare the per-
formance of both stock-level and sector-level strategies across all possible recency win-
dows to examine the overall performance against the performance of the best KPIs +
<KGE> models (that use a single knowledge graph as input). Figure 6 illustrates the
ROI@10 performance of the tested methods for different KPIs – BasicKPIs on Fig-
ure 6(a), on the left, and AdvKPIs on Figure 6(b), on the right. Here, the x-axis rep-
resents the length of the recency window in weeks (as we go towards the right part of
each graph, we are using more – and older – examples to choose the best model for
each stock). Figure 6 shows, in orange, the adaptive stock-level model and, in blue, the
adaptive sector-level model. We include, as reference the best model for the 10K graph
(KPIs + TransE) and the Wikidata graph (KPIs + RGCN), respectively, as green and
purple dashed lines.

We observe distinct patterns achieved by the two adaptive strategies. The stock-
level approach exhibits volatile performance and outperforms the single-graph baseline
over shorter recency windows—up to 20 weeks for BasicKPIs and 15–25 weeks for

24 L. Guo et al.

AdvKPIs. The highest improvement reaches 3.39% (0.04694 vs. 0.0454) for BasicK-
PIs and 3.19% (0.05180 vs. 0.0502) for AdvKPIs, compared to the best-performing
single-graph method. In contrast, the sector-level method demonstrates more stable
performance over longer recency windows and consistently outperforms or performs
comparably to the best-performing baseline when the window size exceeds 20 weeks,
with the highest improvement of 1.89% (0.04626 vs. 0.0454) and 2.35% (0.05138 vs.
0.0502) for BasicKPIs and AdvKPIs, respectively. This suggests that shorter recency
windows are more suitable for fine-grained selection, whereas longer windows are bet-
ter suited for coarse-grained sector-level strategies that benefit from broader temporal
aggregation.

To answer RQ3: An adaptive graph selection method that predicts and assigns a
graph to each asset can lead to improved recommendation ROI. However, our find-
ings suggest that the recency window has a significant impact on the performance of
different adaptive selection strategies: shorter windows benefit stock-level strategy by
emphasizing recent fluctuations, while longer windows support sector-level methods
through stable temporal smoothing.

RQ4: Effect of Recency Window Length As the recency window sizes plays an im-
portant role in the way of dynamically combine different graphs, we hypothesize that
different varying window lengths promote the use of different graphs. In particular, we
investigate how the length of the recency window influences the graph selection across
both the top-10 recommended stocks and the entire stock set. Figure 7 and Figure 8
show the variation in the percentage of 10K Graph usage across different recency win-
dows (x-axis) for BasicKPIs and AdvKPIs, respectively. For each KPI set, results are
presented for both stock-level and sector-level strategies, with proportions shown sepa-
rately for the top-10 recommended stocks (Figures 7 (a) and 8(a)) and for the full stock
set (Figures 7(b) and 8(b)).

We first compare the graph selection with the profitability of our adaptive approaches.
A first observation from Figures 7 and 8 is that, as the recency window increases, we
observe a trend toward more balanced and stable use of the graph across the entire stock
set, in both stock and sector-level configurations. This is particularly noteworthy in the
sector level strategy, which barely modifies the stock allocation to each method on re-
cency windows bigger than 20 weeks – explaining the stability of the ROI performance
for this method in Figure 6. Indeed, the improvement in performance under long re-
cency windows in Figure 6(b) can be explained by the increase of usage of the 10K
graph when we use those long recency windows. The performance of the stock-level
strategy, however, it is not so easily explainable by changes in graph usage: while the
usage of different graphs tends to estabilize as we consider longer time periods, the
performance does not. This implies that, although the proportion of stocks selected for
each graph is the same, the stocks are not – making the stock selection strategy very
sensitive to changes in the recency window.

Interestingly, there are changes in the stock selection trend when we look at the top-
10 selection (Figures 7 and 8(a)) and the complete set of stocks (Figures 7 and 8 (b)).
When we look at the full set of stocks, there is a different dominant graph for BasicKPIs
and AdvKPIs – specially when we use longer recency windows. The BasicKPIs model

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 25

0 20 40 60 80
Recency Windows (Weeks)

50

60

70

80

90

100
As

se
ts

 U
sin

g
10

K
Gr

ap
h

(%
)

0 20 40 60 80
Recency Windows (Weeks)

50

60

70

80

90

100

As
se

ts
 U

sin
g

10
K

Gr
ap

h
(%

)

Sector-level Stock-level

(a) Top-10 selection (b) Full asset selection

Fig. 7: A comparison of the proportion of 10K graphs selected (a) in the top 10 recommended
stocks and (b) across all stocks under the BasicKpis setting

0 20 40 60 80
Recency Windows (Weeks)

40
50
60
70
80
90

As
se

ts
 U

sin
g

10
K

Gr
ap

h
(%

)

0 20 40 60 80
Recency Windows (Weeks)

40
50
60
70
80
90

As
se

ts
 U

sin
g

10
K

Gr
ap

h
(%

)

Sector-level Stock-level

(a) Top-10 selection (b) Full asset selection

Fig. 8: A comparison of the proportion of 10K graphs selected (a) in the top 10 recommended
stocks and (b) across all stocks under the AdvKpis setting

tends to favor the 10K graph – which is used to predict the profitability of slightly more
than 50% of the stocks predicted by the stock-level model, and between 70-95% of
the stocks predicted by the sector-level model. On the other hand, the AdvKPIs model
tends to favor the Wikidata graph – limiting the usage of the 10K graph to 40-50%
of the stocks. Considering the overall ROI@10 performance reported in Section 6.1,
where the best BasicKPIs model uses the 10K graph, and the best AdvKPIs model
uses the Wikidata graph, this is what we expected for both the top-10 and the complete
selection. However, for both BasicKPIs and AdvKPIs, in the top-10 assets, the selection
is dominated by the 10K graph (predicting between 60-99% of the stocks in the top-10,
depending on the recency window).

Following Figure 4, this mismatch between the top-10 and the complete set of stocks
might be explained by the preference of the 10K graph to promote healthcare stocks.
These stocks were highly important during the Covid-19 pandemic period on which the
test period runs – and their selection on the top 10 explains the preference of the 10K

26 L. Guo et al.

graph over the Wikidata graph for the top-10 stocks. However, both sector and stock-
based adaptive models can benefit from a mixture of the two graphs – as it allows a
greater diversification of assets in the recommendation and greater performance.

To answer RQ4: The length of recency window has differing effects on graph usage
patterns and asset selection for investment – with longer recency windows leading to
more stable graph usage selections. While overall graph selection appears relatively
balanced across the full stock set, the top-10 recommended assets consistently favor the
10K Graph across most settings.

8 Conclusion & Future Work

In this work, we have explored the impact that two KG construction strategies have
when predicting the future returns of U.S. stocks. For this, we collected a Wikidata
subgraph and a built a graph by automatically extracting factoids from annual 10K
filings. We have compared these methods under a unified FAR model that estimates the
profitability of stocks. This method integrates price technical indicators with asset KG
vectors extracted from the graphs by 9 different knowledge graph embedding models.

Our findings show that both graph types can improve the profitability of recommen-
dations with respect to only using price information by up-to 10.7%. However, different
graphs favour different embedding strategies: graphs extracted from financial reports
tend to be smaller, and therefore benefit from translation-based models like TransE [6]
or RotatE [43], whereas the bigger Wikidata graph favours complex neural network
models like RGCN [41].

We have also analysed the distribution of the profitable assets recommended by the
models across sectors, showing that different knowledge graph construction strategies
might present biases towards certain types of assets. In our experiments, the 10K graph
has been able to leverage the information regarding global events (in particular, the
Covid-19 pandemic) available in the reports to promote profitable healthcare stocks,
while the more static Wikidata graph has identified profitable assets in sectors like util-
ities. Based on this observation, we further investigated the effectiveness of adaptive
graph selection strategies at stock and sector levels. Our findings indicate that dynami-
cally selecting graphs based on past performance can enhance profitability, supporting
that different knowledge graphs indeed offer complementary strengths for different as-
set types. However, different strategies exhibit varying preferences for recency window
sizes, reflecting their sensitivity to temporal granularity. Moreover, while longer win-
dows generally result in more balanced graph usage, the top-10 assets consistently favor
the 10K Graph, largely due to its alignment with high-performing healthcare sectors
during the Covid-19 pandemic.

As future work, we aim to compare these knowledge graphs with others that include
other types of financial information, such as news or press releases. We also aim to fur-
ther investigate more fine-grained adaptive methods that integrate additional properties
of different knowledge graphs for improved stock recommendation. Finally, as in this
work we have only used random forests, we aim to test other FAR algorithms, including
those directly targeting asset ranking [2].

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 27

References

1. Ali, M., Berrendorf, M., Hoyt, C.T., Vermue, L., Sharifzadeh, S., Tresp, V., Lehmann, J.:
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings.
Journal of Machine Learning Research 22(82), 1–6 (2021)

2. Alsulmi, M.: From Ranking Search Results to Managing Investment Portfolios: Exploring
Rank-Based Approaches for Portfolio Stock Selection. Electronics 11(23), 4019 (2022).
https://doi.org/10.3390/electronics11234019

3. Alzaman, C.: Deep learning in stock portfolio selection and predictions. Expert Sys-
tems with Applications 237, 121404 (2024). https://doi.org/10.1016/j.eswa.
2023.121404

4. Bach, N., Badaskar, S.: A review of relation extraction. Literature review for Language and
Statistics II 2, 1–15 (2007)

5. Balazevic, I., Allen, C., Hospedales, T.: TuckER: Tensor Factorization for Knowledge Graph
Completion. In: 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP 2019). pp. 5185–5194. Association for Computational Linguistics, Hong Kong,
China (2019). https://doi.org/10.18653/v1/D19-1522

6. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating Embed-
dings for Modeling Multi-relational Data. In: 27th Conference on Neural Information Pro-
cessing Systems (NeurIPS 2013). Curran Associates, Inc., Stateline, Nevada, USA (2013)

7. Burke, R.: Hybrid Web Recommender Systems, pp. 377–408. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_
12, https://doi.org/10.1007/978-3-540-72079-9_12

8. Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey of Graph Embedding: Prob-
lems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering
30(9), 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

9. Chen, Q.: Stock movement prediction with financial news using contextualized embedding
from BERT. CoRR abs/2107.08721 (2021)

10. Cheng, D., Yang, F., Wang, X., Zhang, Y., Zhang, L.: Knowledge Graph-based Event Em-
bedding Framework for Financial Quantitative Investments. In: 43rd International ACM SI-
GIR Conference on Research and Development in Information Retrieval (SIGIR 2020). pp.
2221–2230. ACM, Online, China (2020). https://doi.org/10.1145/3397271.
3401427

11. Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J.Z., Chen, H.: Knowledge-Driven Stock
Trend Prediction and Explanation via Temporal Convolutional Network. In: The Web Con-
ference 2019 (WWW 2019 Companion). pp. 678–685. ACM, San Francisco, CA, USA
(2019). https://doi.org/10.1145/3308560.3317701

12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D Knowledge Graph
Embeddings. In: 32nd of the AAAI Conference on Artificial Intelligence (AAAI 2018).
pp. 1811–1818. AAAI Press, New Orleans, LA, USA (2018). https://doi.org/10.
1609/aaai.v32i1.11573

13. Elhammadi, S., V.S. Lakshmanan, L., Ng, R., Simpson, M., Huai, B., Wang, Z., Wang,
L.: A High Precision Pipeline for Financial Knowledge Graph Construction. In: 28th In-
ternational Conference on Computational Linguistics (COLING 2020). pp. 967–977. In-
ternational Committee on Computational Linguistics, Online, Barcelona, Spain (2020).
https://doi.org/10.18653/v1/2020.coling-main.84

14. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S.: Temporal Relational Ranking for
Stock Prediction. ACM Transactions on Information Systems 37(2), 1–30 (2019). https:
//doi.org/10.1145/3309547

https://doi.org/10.3390/electronics11234019
https://doi.org/10.3390/electronics11234019
https://doi.org/10.1016/j.eswa.2023.121404
https://doi.org/10.1016/j.eswa.2023.121404
https://doi.org/10.1016/j.eswa.2023.121404
https://doi.org/10.1016/j.eswa.2023.121404
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3397271.3401427
https://doi.org/10.1145/3308560.3317701
https://doi.org/10.1145/3308560.3317701
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.18653/v1/2020.coling-main.84
https://doi.org/10.18653/v1/2020.coling-main.84
https://doi.org/10.1145/3309547
https://doi.org/10.1145/3309547
https://doi.org/10.1145/3309547
https://doi.org/10.1145/3309547

28 L. Guo et al.

15. Griffin, P.A.: Got information? investor response to form 10-k and form 10-q edgar filings.
Review of Accounting Studies 8, 433–460 (2003)

16. Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D., Gutierrez, C., Kirrane, S.,
Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N., Polleres, A., Rashid, S.M., Rula, A.,
Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge Graphs. ACM Com-
puting Surveys 54(4), 71:1–71:37 (2021). https://doi.org/10.1145/3447772

17. Hu, X., Wen, L., Xu, Y., Zhang, C., Yu, P.: SelfORE: Self-supervised relational feature learn-
ing for open relation extraction. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP 2020). pp. 3673–
3682. Association for Computational Linguistics, Online (Nov 2020). https://doi.
org/10.18653/v1/2020.emnlp-main.299, https://aclanthology.org/
2020.emnlp-main.299

18. Hu, Z., Liu, W., Bian, J., Liu, X., Liu, T.Y.: Listening to Chaotic Whispers: A Deep Learning
Framework for News-oriented Stock Trend Prediction. In: 11th ACM International Confer-
ence on Web Search and Data Mining (WSDM 2018). pp. 261–269. ACM, Los Angeles, CA,
USA (2018). https://doi.org/10.1145/3159652.3159690

19. Kaur, S., Smiley, C., Gupta, A., Sain, J., Wang, D., Siddagangappa, S., Aguda, T., Shah,
S.: REFinD: Relation Extraction Financial Dataset. In: the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2023). pp. 3054–
3063. ACM, Taipei, Taiwan (2023)

20. Kertkeidkachorn, N., Nararatwong, R., Xu, Z., Ichise, R.: FinKG: A Core Financial Knowl-
edge Graph for Financial Analysis. In: 17th IEEE International Conference on Seman-
tic Computing (ICSC 2023). pp. 90–93. IEEE, Laguna Hills, CA, USA (2023). https:
//doi.org/10.1109/ICSC56153.2023.00020

21. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Net-
works. In: 10th International Conference on Learning Representations (ICLR 2017). Open-
Review, Toulon, France (2017)

22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning Entity and Relation Embeddings for
Knowledge Graph Completion. In: 29th AAAI Conference on Artificial Intelligence (AAAI
2015). pp. 2181–2187. AAAI Press, Austin, TX, USA (2015). https://doi.org/10.
1609/aaai.v29i1.9491

23. Long, J., Chen, Z., He, W., Wu, T., Ren, J.: An integrated framework of deep learning and
knowledge graph for prediction of stock price trend: An application in Chinese stock ex-
change market. Applied Soft Computing 91, 106205 (2020). https://doi.org/10.
1016/j.asoc.2020.106205

24. McCreadie, R., Perakis, K., Srikrishna, M., Droukas, N., Pitsios, S., Prokopaki, G., Perdik-
ouri, E., Macdonald, C., Ounis, I.: Next-Generation Personalized Investment Recommen-
dations. In: Soldatos, J., Kyriazis, D. (eds.) Big Data and Artificial Intelligence in Digital
Finance: Increasing Personalization and Trust in Digital Finance using Big Data and AI, pp.
171–198. Springer (2022). https://doi.org/10.1007/978-3-030-94590-9_
10

25. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on
the Web of Documents. In: 7th International Conference on Semantic Systems (I-Semantics
2011). p. 1–8. ACM, Graz, Austria (2011). https://doi.org/10.1145/2063518.
2063519

26. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which al-
gorithms implement ward’s criterion? Journal of classification 31, 274–295 (2014)

27. Naik, N., Mohan, B.R.: Stock Price Movements Classification Using Machine and Deep
Learning Techniques-The Case Study of Indian Stock Market. In: 20th International

https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.18653/v1/2020.emnlp-main.299
https://doi.org/10.18653/v1/2020.emnlp-main.299
https://doi.org/10.18653/v1/2020.emnlp-main.299
https://doi.org/10.18653/v1/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://aclanthology.org/2020.emnlp-main.299
https://doi.org/10.1145/3159652.3159690
https://doi.org/10.1145/3159652.3159690
https://doi.org/10.1109/ICSC56153.2023.00020
https://doi.org/10.1109/ICSC56153.2023.00020
https://doi.org/10.1109/ICSC56153.2023.00020
https://doi.org/10.1109/ICSC56153.2023.00020
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1016/j.asoc.2020.106205
https://doi.org/10.1016/j.asoc.2020.106205
https://doi.org/10.1016/j.asoc.2020.106205
https://doi.org/10.1016/j.asoc.2020.106205
https://doi.org/10.1007/978-3-030-94590-9_10
https://doi.org/10.1007/978-3-030-94590-9_10
https://doi.org/10.1007/978-3-030-94590-9_10
https://doi.org/10.1007/978-3-030-94590-9_10
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2063518.2063519

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 29

Conference on Engineering Applications of Neural Networks (EANN 2019). pp. 445–
452. Springer, Hersonissons, Crete, Greece (2019). https://doi.org/10.1007/
978-3-030-20257-6_38

28. Neely, C.J., Rapach, D.E., Tu, J., Zhou, G.: Forecasting the Equity Risk Premium: The Role
of Technical Indicators. Management Science 60(7), 1772–1791 (2014). https://doi.
org/10.1287/mnsc.2013.1838

29. Nelson, D.M.Q., Pereira, A.C.M., Oliveira, R.A.: Stock market’s price movement prediction
with LSTM neural networks. In: 2017 International Joint Conference on Neural Networks
(IJCNN 2017). pp. 1419–1426. IEEE, Anchorage, AK, USA (2017). https://doi.org/
10.1109/IJCNN.2017.7966019

30. Nickel, M., Rosasco, L., Poggio, T.: Holographic Embeddings of Knowledge Graphs. In:
30th AAAI Conference on Artificial Intelligence (AAAI 2016). pp. 1955–1961. AAAI Press,
Phoenix, AZ, USA (2016). https://doi.org/10.1609/aaai.v30i1.10314

31. Nickel, M., Tresp, V., Kriegel, H.P.: A Three-Way Model for Collective Learning on Multi-
Relational Data. In: 28th International Conference on Machine Learning (ICML 2011). pp.
809–816. Omnipress, Bellevue, WA, USA (2011)

32. Pejić Bach, M., Krstić, Ž., Seljan, S., Turulja, L.: Text mining for big data analysis in finan-
cial sector: A literature review. Sustainability 11(5), 1277 (2019). https://doi.org/
10.3390/su11051277

33. Pujara, J.: Extracting Knowledge Graphs from Financial Filings: Extended Abstract. In: 3rd
International Workshop on Data Science for Macro–Modeling with Financial and Economic
Datasets (DSMM 2017), colocated with the 2017 International Conference on Management
of Data (SIGMOD/PODS 2017). pp. 5:1–5:2. ACM, Chicago, IL, USA (2017). https:
//doi.org/10.1145/3077240.3077246

34. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: A Python natural language
processing toolkit for many human languages. In: 58th Annual Meeting of the Association
for Computational Linguistic: System Demonstrations (ACL 2020). pp. 101–108. Associ-
ation for Computational Linguistics, Online (2020). https://doi.org/10.18653/
v1/2020.acl-demos.14

35. Rather, A.M., Agarwal, A., Sastry, V.N.: Recurrent Neural Network and a Hybrid Model for
Prediction of Stock Returns. Expert Systems with Applications 42(6), 3234–3241 (2015).
https://doi.org/10.1016/j.eswa.2014.12.003

36. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP 2019). pp. 3982–3992. Association for Computational Linguistics, Hong Kong,
China (2019). https://doi.org/10.18653/v1/D19-1410

37. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge Graph Embed-
ding for Link Prediction: A Comparative Analysis. ACM Transactions on Knowledge Dis-
covery from Data 15(2), 14:1–14:49 (2021). https://doi.org/10.1145/3424672

38. Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J., Re-
mez, T., Rapin, J., et al.: Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950 (2023)

39. Sainz, O., García-Ferrero, I., Agerri, R., de Lacalle, O.L., Rigau, G., Agirre, E.: GoL-
LIE: Annotation guidelines improve zero-shot information-extraction. In: The 12th Interna-
tional Conference on Learning Representations (ICLR 2024). OpenReview, Vienna, Austria
(2024), https://openreview.net/forum?id=Y3wpuxd7u9

40. Sanz-Cruzado, J., McCreadie, R., Droukas, N., Macdonald, C., Ounis, I.: On Transaction-
Based Metrics as a Proxy for Profitability of Financial Asset Recommendations. In: 3rd
International Workshop on Personalization & Recommender Systems in Financial Services

https://doi.org/10.1007/978-3-030-20257-6_38
https://doi.org/10.1007/978-3-030-20257-6_38
https://doi.org/10.1007/978-3-030-20257-6_38
https://doi.org/10.1007/978-3-030-20257-6_38
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1287/mnsc.2013.1838
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1109/IJCNN.2017.7966019
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.3390/su11051277
https://doi.org/10.3390/su11051277
https://doi.org/10.3390/su11051277
https://doi.org/10.3390/su11051277
https://doi.org/10.1145/3077240.3077246
https://doi.org/10.1145/3077240.3077246
https://doi.org/10.1145/3077240.3077246
https://doi.org/10.1145/3077240.3077246
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.1016/j.eswa.2014.12.003
https://doi.org/10.1016/j.eswa.2014.12.003
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3424672
https://doi.org/10.1145/3424672
https://openreview.net/forum?id=Y3wpuxd7u9

30 L. Guo et al.

(FinRec 2022), colocated with the 16th ACM Conference on Recommender Systems (Rec-
Sys 2022). pp. 1–9. Seattle, WA, USA (2022)

41. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Model-
ing Relational Data with Graph Convolutional Networks. In: 15th Europan Semantic Web
Conference (ESWC 2018). pp. 593–607. Springer, Heraklion, Greece (2018). https:
//doi.org/10.1007/978-3-319-93417-4_38

42. Sun, Y., Fang, M., Wang, X.: A Novel Stock Recommendation System Using Guba Sen-
timent Analysis. Personal and Ubiquitous Computing 22(3), 575–587 (2018). https:
//doi.org/10.1007/s00779-018-1121-x

43. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space. In: 7th International Conference on Learning Representations
(ICLR 2019). OpenReview, New Orleans, LA, USA (2019)

44. Takayanagi, T., Chen, C.C., Izumi, K.: Personalized dynamic recommender system for in-
vestors. In: Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. p. 2246–2250. SIGIR ’23, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3539618.
3592035

45. Takayanagi, T., Izumi, K., Kato, A., Tsunedomi, N., Abe, Y.: Personalized stock recom-
mendation with investors’ attention and contextual information. In: Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information Re-
trieval. p. 3339–3343. SIGIR ’23, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3539618.3591850

46. Tucker, L.R.: The Extension of Factor Analysis to Three-Dimensional Matrices. In: Contri-
butions to Mathematical Psychology, pp. 109–127. Holt, Rinehart and Winston (1964)

47. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph atten-
tion networks. In: 6th International Conference on Learning Representations (ICLR 2018).
OpenReview, Vancouver, BC, Canada (2018)

48. Vrandečić, D., Krötzsch, M.: Wikidata: A Free Collaborative Knowledgebase. Communica-
tions of the ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

49. Wang, M., Qiu, L., Wang, X.: A Survey on Knowledge Graph Embeddings for Link
Prediction. Symmetry 13(3), 485:1–485:29 (2021). https://doi.org/10.3390/
sym13030485

50. Wang, T., Guo, J., Shan, Y., Zhang, Y., Peng, B., Wu, Z.: A knowledge graph-GCN-
community detection integrated model for large-scale stock price prediction. Applied
Soft Computing 145, 110595 (2023). https://doi.org/10.1016/J.ASOC.2023.
110595

51. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: Knowledge Graph Attention Net-
work for Recommendation. In: 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD 2019). pp. 950–958. ACM, Anchorage, AK, USA (2019).
https://doi.org/10.1145/3292500.3330989

52. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge Graph Embedding by Translating
on Hyperplanes. In: 28th AAAI Conference on Artificial Intelligence (AAAI 2014). pp.
1112–1119. AAAI Press, Québec City, Québec, Canada (2014). https://doi.org/10.
1609/aaai.v28i1.8870

53. Wu, L., Petroni, F., Josifoski, M., Riedel, S., Zettlemoyer, L.: Zero-shot Entity Linking with
Dense Entity Retrieval. In: 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2020). pp. 6397–6407. Association for Computational Linguistics, Online
(2020)

54. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding Entities and Relations for Learning
and Inference in Knowledge Bases. In: Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015). San Diego, CA, USA (2015)

https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/s00779-018-1121-x
https://doi.org/10.1007/s00779-018-1121-x
https://doi.org/10.1007/s00779-018-1121-x
https://doi.org/10.1007/s00779-018-1121-x
https://doi.org/10.1145/3539618.3592035
https://doi.org/10.1145/3539618.3592035
https://doi.org/10.1145/3539618.3592035
https://doi.org/10.1145/3539618.3592035
https://doi.org/10.1145/3539618.3591850
https://doi.org/10.1145/3539618.3591850
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.3390/sym13030485
https://doi.org/10.3390/sym13030485
https://doi.org/10.3390/sym13030485
https://doi.org/10.3390/sym13030485
https://doi.org/10.1016/J.ASOC.2023.110595
https://doi.org/10.1016/J.ASOC.2023.110595
https://doi.org/10.1016/J.ASOC.2023.110595
https://doi.org/10.1016/J.ASOC.2023.110595
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870

Evaluating Knowledge Graph Sources for Non-Personalized Asset Recommendation 31

55. Zhang, L., Aggarwal, C., Qi, G.J.: Stock Price Prediction via Discovering Multi-Frequency
Trading Patterns. In: 23rd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD 2017). pp. 2141–2149. ACM, Halifax, Nova Scotia, Canada
(2017). https://doi.org/10.1145/3097983.3098117

56. Zhang, Y., Yang, K., Du, W., Xu, W.: Predicting Stock Price Movement Direction with Enter-
prise Knowledge Graph. In: 22nd Pacific Asia Conference on Information Systems (PACIS
2018). p. 237. Yokohama, Japan (2018)

57. Zhao, Y., Du, H., Liu, Y., Wei, S., Chen, X., Zhuang, F., Li, Q., Kou, G.: Stock Movement
Prediction Based on Bi-Typed Hybrid-Relational Market Knowledge Graph via Dual Atten-
tion Networks. IEEE Transactions on Knowledge and Data Engineering 35(8), 8559–8571
(2023). https://doi.org/10.1109/TKDE.2022.3220520

https://doi.org/10.1145/3097983.3098117
https://doi.org/10.1145/3097983.3098117
https://doi.org/10.1109/TKDE.2022.3220520
https://doi.org/10.1109/TKDE.2022.3220520

	Evaluating Knowledge Graph Sources for Non-Personalized Financial Asset Recommendation: 10K Reports vs. Wikidata

