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ABSTRACT 
Link prediction has mainly been addressed as an accuracy-target-
ing problem in the social networks field. We discuss different per-
spectives on the problem considering other dimensions and ef-
fects that the link prediction methods may have on the social net-
work where they are applied. Specifically, we consider the struc-
tural effects the prediction can have if the predicted links are 
added to the network. We consider further utility dimensions be-
yond prediction accuracy, namely novelty and diversity. We dis-
cuss the adaptation, for this purpose, of specific network, novelty 
and diversity metrics from social network analysis, recommender 
systems, and information retrieval. 
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1 INTRODUCTION 
Link prediction can be considered today one of the classic areas in 
social network analysis research and development [1,14,23,24]. 
The problem consists in finding links in a social network that have 
not been observed or formed yet, but may do so in the future, or 
may simply be useful to add. A paradigmatic application for the 
problem is recommending contacts in online social networks 
[16,17,32], a feature most popular platforms, such as Facebook, 
Twitter or LinkedIn, nowadays provide [13,15].  

A link prediction method can be evaluated in different ways, 
depending on the specific nuances in how the problem is stated. 
If seen as a classification task, the methods can be evaluated in 
terms of the predictive accuracy by usual metrics such as AUC, 
contingency tables, etc. [23]. If stated as a recommendation prob-
lem, information retrieval metrics can be used, such as precision, 
recall, etc. [16]. Yet as far as we are aware, most of the evaluation 
approaches to date, and therefore the solutions developed target-
ing them, seek to optimize microscopic perspectives: the number 
of correctly classified links (true positives), the accuracy or the 
benefit the recommendation brings to each target user in isola-
tion, to be just averaged over the network.  

In this paper we contend that we may want to consider struc-
tural and global impact of link prediction, in addition to the plain 
accuracy and local effects, when assessing a link prediction 

algorithm. Contact recommendation functionalities nowadays ac-
count for an increasing fraction of the online social network 
growth. Link prediction therefore represents an opportunity to fa-
vor trends towards desirable global properties in the evolution of 
a network, beyond (and compatible with) the short-term micro 
level value to be procured by the recommended links.  

In order to explore this perspective, the social network analy-
sis field provides a profuse array of concepts, metrics and analytic 
methods to assess the properties of the effect of link recommen-
dation on a social network. We hence explore using such notions 
and measures to define new evaluation metrics for link prediction. 
Moreover, the recommender systems field has developed over re-
cent years a clear awareness that accuracy alone is just a rather 
partial view on the value of recommendation: novelty and diver-
sity perspectives can be as important –at both the macro and micro 
levels. We therefore likewise consider the adaptation of outcomes 
from that area. We find that, at more than one level, the global net-
work analysis dimension of edge prediction links to similar princi-
ples as lay beneath the novelty and diversity perspectives. 

2 RELATED WORK 
Incipient research has considered the effects of contact recom-
mendation algorithms on global properties of the network. We 
can distinguish two main perspectives in this scope. The first one 
focuses on the measurement of the effects of recommender sys-
tems on the structure of networks. The effect on metrics such as 
the clustering coefficient [8,19,31], the number of connected com-
ponents [19] or the degree distribution [8] have been analyzed. 
The second line considers influencing the network growth to-
wards some desired properties. In particular, Parotsidis [29] seeks 
to minimize the expected path length between the target user and 
the rest of the network; and Wu et al. [35] seek to maximize the 
modularity of the network. In this paper, we aim to broaden the 
perspective undertaken in such initial research, towards a wider 
range of network metrics, and dimensions beyond accuracy, such 
as novelty and diversity. 

3 NOTATION 
We shall use the following notation in the rest of the paper. We 
denote as 𝒢 = 〈𝒰, 𝐸〉  the graph structure of a social network, 
where 𝒰 represents the set of people in the network, and 𝐸 ⊂ 𝒰∗

2 
represents the relations between people, 𝒰∗

2 being a shortcut to 
denote the set of all different user pairs. For a person 𝑢 ∈ 𝒰 we 
denote by Γ(𝑢) the set of people to which 𝑢 is connected. In di-
rected networks, we shall differentiate between the incoming and 
outgoing neighborhoods Γin(𝑢) and Γout(𝑢) respectively. 
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The link prediction problem can be stated as identifying the 
subset of links 𝐸̂ ⊂ (𝒰∗

2 − 𝐸) that are not observed but present in 
the network, or will form in the future, or would be useful to add 
–whatever the variant of the problem is. From a recommendation 
perspective, we shall denote by Γ̂out(𝑢) the set of people involved 
in the predicted arcs going out from  𝑢 , i.e. Γ̂out(𝑢) =

{𝑣 ∈ 𝒰|(𝑢, 𝑣) ∈ 𝐸̂}. And we shall refer to the graph including only 
the recommended links as 𝒢̂ = 〈𝒰, 𝐸̂〉. 

4 SOCIAL NETWORK ANALYSIS 
One way to assess the effect of a prediction algorithm on the net-
work is to consider the extension of the network 𝒢′ = 〈𝒰, 𝐸′〉, 
with 𝐸′ = 𝐸 ∪ 𝐸̂, by a certain subset 𝐸̂ of predicted links (for in-
stance, the union of the top 𝑘 predicted outgoing links in the rank-
ing for each person 𝑢), as if the party the prediction is delivered 
to (e.g. the users of an online social network) accepted all the links 
in 𝐸̂. Hence, any network metric applied to 𝒢′ can be taken as a 
metric on the prediction method. We summarize here some clas-
sical metrics we find of potential interest for the perspective under 
discussion.  

4.1 Distance-Based Metrics 
An effect of recommendation, inasmuch as it increases the net-
work density, is a general reduction of distances in the augmented 
graph. We may hence consider the metrics that measure this ef-
fect in different ways. We define reciprocal versions of the metrics 
when appropriate, in such a way that high values “are good” (in 
the sense that they reflect a possibly desired property). 

 Average reciprocal shortest path length: 

ARSL(𝒢′) =
1

|𝒰|(|𝒰| − 1)
∑

1

δ′(𝑢, 𝑣)
𝑢,𝑣 ∈ 𝒰

 

where δ′(𝑢, 𝑣) denotes the shortest-path distance between 𝑢 
and 𝑣 in the extended network 𝒢′.  

 Reciprocal diameter:  RD(𝒢′) = 1 max
𝑢∈𝒰

𝑒𝑐𝑐(𝑢)⁄  

where the eccentricity 𝑒𝑐𝑐(𝑢) = max𝑣∈𝒰:δ′(𝑢,𝑣)<∞ δ′(𝑢, 𝑣) of a 

node 𝑢 is defined as the distance to the farthest accessible node 
from 𝑢 in the network [9]. 

 Reciprocal average eccentricity: 

RAE(𝒢′) = |𝒰| ∑ 𝑒𝑐𝑐(𝑢)

𝑢∈𝒰

⁄  

 Mean prediction distance: 

MPD(𝐸̂|𝒢) = |𝐸̂| ∑
1

δ(𝑢, 𝑣)
(𝑢,𝑣)∈𝐸̂

⁄ − 2 

where δ(𝑢, 𝑣) denotes the shortest distance in the original net-
work 𝒢  (before prediction). MPD computes the harmonic 
mean of the prediction distances, subtracting 2 to set the met-
ric minimum value at 0.  

Distance shortening is likely a desirable effect in most cases, 
as it makes people easier to reach from each other through a 
smaller number of hops through common acquaintances. The dif-

ferent ways to average the distances provides nuances in the per-
spective with which distance is accounted for. ARSL, RD and RAE 
range in (0,1], and MPD takes values in [0, ∞]. ARSL and MPD are 
defined in such a way that so-called global bridges [12], if any, 
between previously separate connected components are rewarded 
as the ideal case, whereas RD and RAE just ignore such improve-
ments and only consider distances within components. MPD 
measures in a quite direct way how the predicted links bring peo-
ple far from their usual social environment, which can be seen as 
a measure of novelty from a contact recommendation perspective.  

4.2 Structural Diversity 
Notions of structural diversity have been a profuse object of study 
in the field of complex networks [19]. From the simplest perspec-
tive, the degree distribution can be seen as a primary sign of con-
nective diversity: a very skewed distribution reflects a concentra-
tion of links around a few highly connected people, whereas in a 
flatter distribution each person gets a more distinctive social circle 
of her own. The “flatness” of the degree distribution can be sum-
marized by a single number using the Gini index [11], which we 
can reverse into the degree Gini complement: 

DGC(𝒢′) = 1 −
1

|𝒰| − 1
∑(2𝑖 − |𝒰| − 1)

|Γ′(𝑢𝑖)|

|𝐸′|

|𝒰|

𝑖=1

 

where people 𝑢𝑖 in the above definition are ordered by non-de-
creasing degree |Γ′(𝑢𝑖)|, and Γ′ represents neighborhoods in the 
extended graph 𝒢′. We take the complement of the Gini index, in 
such a way high values indicate that the edges are evenly distrib-
uted. In directed networks it makes also sense to compute 
indegree and outdegree versions IDGC and ODGC. 

Richer notions of structural diversity have been studied, re-
lated to the concept of weak tie. Granovetter hypothesized that 
such links provide more novel information that strong ties [10,12]. 
Measures of link strength can be defined based just on topological 
properties in the network, and can be related in some way or other 
to the sociological notion of weak tie [10,12]. Such measures are 
typically related to notions of redundancy: a tie is weak inasmuch 
as it is not redundant to other links around it; it carries a somehow 
exclusive (and hence valuable) connection between specific peo-
ple or regions of the network. Such measures can be broadly di-
vided in two categories: global and local. 

4.1.1 Local notions 
Granovetter provided the first local notion of weak link under the 
name of local bridge [12]: a link between people who do not have 
any common neighbors. We find this definition is rather binary 
and restrictive, and results in a quite coarse metric. The so-called 
link embeddedness provides a finer and more informative metric, 
which measures the relative overlap of the neighborhoods of its 
endpoints [36] as an indication of link strength: 

Embeddedness(𝑢, 𝑣|𝒢′) =
|Γout

′ (𝑢) ∩ Γin
′ (𝑣)|

|Γout
′ (𝑢) ∪ Γin

′ (𝑣)|
 

We may assess the degree to which a link prediction method 
suggests weak ties by measuring the average edge weakness of 
the suggested links as the complement of embeddedness:  
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AEW(𝐸̂|𝒢′) =
1

|𝐸̂|
∑ (1 − Embeddedness(𝑢, 𝑣|𝒢′))

(𝑢,𝑣)∈𝐸̂

 

The metric ranges in [0,1] in such a way that the higher the weak-
ness, the higher the structural diversity brought by link prediction.  

Another classical means to assess the degree of connection re-
dundancy is the clustering coefficient. The global clustering coef-
ficient of a network can be measured as the ratio of triangles in 
the network over the number of triads (paths of length two). 
Again, we take the clustering coefficient complement, to get 
the metric values properly aligned with a notion of diversity: 

CCC(𝒢′) = 1 −
|{(𝑢, 𝑣, 𝑤)|(𝑢, 𝑣), (𝑣, 𝑤), (𝑢, 𝑤) ∈ 𝐸′}|

|{(𝑢, 𝑣, 𝑤)|(𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸′}|
 

A link prediction method brings diversity to the network to the 
extent that this metric gets a high value. 

4.1.2 Global notions 
Along with the concept of local bridge, Granovetter proposed a 
global notion of bridge: a unique link between connected compo-
nents. Again, we find this definition very restrictive in common 
social networks, which typically display a giant connected com-
ponent [25]. We hence consider a relaxed definition based on 
work by De Meo et al. [10]: links between communities are con-
sidered weak, and links inside communities are considered strong. 
Inspired by this notion, we can consider different metrics that as-
sess the presence of such links in the network. If communities are 
not a given, such metrics depend on a community detection algo-
rithm [3,7,30], but the analysis can be stable over such algorithms 
[10]. 

A classical measure of the presence of inter-community links 
is the so-called modularity [7,26]. Given a partition of the network 
into a set of communities 𝒞, modularity compares the number of 
edges inside communities (strong links) to the expected number 
of strong ties we would find if the edges were placed at random: 

Mod(𝒢′|𝒞) =
∑ (𝐴𝑢𝑣 − |Γout

′ (𝑢)||Γin
′ (𝑣)| |𝐸′|⁄ )[𝑐(𝑢) = 𝑐(𝑣)]𝑢,𝑣∈𝒰

|𝐸′| − ∑ |Γout
′ (𝑢)||Γin

′ (𝑣)| |𝐸′|⁄ [𝑐(𝑢) = 𝑐(𝑣)]𝑢,𝑣∈𝒰

 

where 𝑐(𝑢) ∈ 𝒞 denotes the community that 𝑢 belongs to, 𝐴𝑢𝑣 is 
equal to 1 if there is a link between users 𝑢 and 𝑣, and 0 other-
wise, and [ · ] is the indicator function, which is equal to 1 iff the 
predicate inside the brackets is true. Once again, since low modu-
larity indicates high diversity, we linearly reorient the values into 
a modularity complement metric ranging in [0,1]: 

MC(𝒢′|𝒞) = (1 − Mod(𝒢′|𝒞)) 2⁄  

MC provides a measure of the abundance of weak ties across 
communities, but it does not provide information about the distri-
bution of the weak links over the communities. We may hence 
want to consider a finer metric that assesses how balanced is the 
weak link distribution. For this purpose we propose the inter-
community Gini complement, which counts the links between 
each pair of different communities, and computes the (comple-
ment of the) Gini coefficient [11] of the distribution: 

ICGC(𝒢′|𝒞) = 1 −
1

𝑀 − 1
∑(2𝑖 − 𝑀 − 1)𝑝((𝑐1, 𝑐2)𝑖|𝒢

′, 𝒞)

𝑀

𝑖=1

 

where 𝑀 = |𝒞|(|𝒞| − 1) is the number of pairs of (different) com-
munities in the partition (𝑀 is half that value if 𝒢′ is undirected), 
(𝑐1, 𝑐2)𝑖  is the 𝑖-th pair of communities with the smaller number 
of links between them, and 𝑝((𝑐1, 𝑐2)|𝒢′, 𝒞) is the probability of 
randomly selecting a weak tie between that pair of communities: 

𝑝((𝑐1, 𝑐2)|𝒢′, 𝒞) =
|{(𝑢, 𝑣) ∈ 𝐸′|𝑐(𝑢) = 𝑐1 ∧ 𝑐(𝑣) = 𝑐2}|

|{(𝑢, 𝑣) ∈ 𝐸′|𝑐(𝑢) ≠ 𝑐(𝑣)}|
 

This metric has the extreme value 0 when only two communities 
have links across them, and 1 when every two pairs of communi-
ties have the same amount of crossing links. However, it does not 
inform of the total number of weak ties. 

5 NOVELTY AND DIVERSITY 
Diversity is a rich concept that is studied in many different disci-
plines. Pertinent to our present focus, the information retrieval 
and recommender systems fields have developed notions of their 
own in this scope [2,4,6,33], which can be meaningful in the link 
prediction context as well. We hence consider their adaptation in 
a perspective where link prediction is seen as a contact recom-
mendation task, targeted to the social network users. 

5.1 Novelty 
Novelty is a primary concern to recommender systems in most 
common scenarios where recommendation is tied to a purpose of 
discovery [4]. The most common novelty notion refers to recom-
mending minority items in the long tail of the popularity distribu-
tion. A long-tail novelty metric can be formalized as the prior 
probability that a random person in the network was not ac-
quainted to some of the recommended people to some other ran-
dom user: 

LTN(𝐸̂|𝒢) =
1

|𝐸̂|
∑ (1 −

|Γin(𝑣)|

|𝒰|
)

(𝑢,𝑣)∈𝐸̂

 

which is inversely equivalent to the average indegree of the pre-
dicted contacts. This metric was proposed as the expected popular-
ity complement in the context of recommender systems [4,33].  

While LTN measures novelty from a global perspective (how 
novel are links to anyone), it also makes sense to consider the spe-
cific novelty from the individual viewpoint of each particular tar-
get user. So-called unexpectedness metrics have been proposed 
in the evaluation of recommender systems [4], which assess the 
dissimilarity between the recommended items and the prior expe-
rience of the specific target user. In our case the available records 
of user experience simply consist of their present contacts in 𝒢: 

Unexp(𝐸̂|𝒢) =
1

|𝐸̂|
∑

1

|Γout(𝑢)|
∑ 𝑑(𝑣, 𝑤)

𝑤∈Γout(𝑢)(𝑢,𝑣)∈𝐸̂

 

where the distance measure 𝑑(𝑣, 𝑤) between users can be defined 
in any meaningful way for the domain at hand. Dissimilarity 
measures based on side-information about users are usually suita-
ble for this purpose. 

LTN and unexpectedness can measure how much the recom-
mended contacts takes target users far from their comfort zone, 
hence bringing opportunities for broadening and diversifying 
their social experience. 
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5.2 Diversity 
From a recommendation perspective, the diversity of a set of pre-
dicted links refers to how different are from each other the people 
recommended at the other end of the links. This is commonly 
measured by the intra-list dissimilarity [4], defined as the av-
erage pairwise distance between the people recommended to each 
target user: 

ILD(𝒢̂) =
1

|𝐸̂|
∑ ∑

𝑑(𝑣, 𝑤)

|Γ̂out(𝑢)|
𝑤∈Γ̂out(𝑢)(𝑢,𝑣)∈𝐸̂

 

where 𝑑(𝑣, 𝑤) is a dissimilarity measure between users, and can 
be defined in any meaningful way –again, distance functions on 
user features tend to be suitably informative. 

The second important diversity notion in recommendation 
concerns a global perspective and has often been referred to as the 
diversity of sales [4]. In our context it can be defined as how evenly 
are the recommendations distributed over all users. Again, the 
Gini index is a suitable summary metric to assess this aspect, 
which we use to define the prediction Gini complement: 

PGC(𝒢̂) = 1 −
1

|𝒰| − 1
∑(2𝑖 − |𝒰| − 1)

|Γ̂in(𝑣𝑖)|

|𝐸̂|

|𝒰|

𝑖=1

 

where 𝑣𝑖  represents the 𝑖-th user by non-decreasing number of 
times |Γ̂in(𝑣𝑖)|  she is recommended. This metric is equal to 1 
when all users are recommended equally often, and 0 when all the 
predicted links point to the same single user. 

5.2.2 Information retrieval perspective 
A related but different take on diversity has been developed in 
search-oriented information retrieval (IR), that considers return-
ing diverse results considering the different possible intents or as-
pects behind an ambiguous search query [36]. Although link pre-
diction does not involve explicit queries, it is possible to adapt this 
perspective by matching users in the network to queries and doc-
uments. For instance, latent communities can be considered in the 
role of query aspects, whereby we can adapt all the aspect-based 
diversity metrics from IR. 

The simplest metric, subtopic recall, which we may rename as 
community recall in our context, counts and averages the ratio 
of communities covered by the people recommended to each tar-
get user [35]: 

CRecall(𝒢̂|𝒞) =
1

|𝒰||𝒞|
∑ | ⋃ 𝑐(𝑣)

𝑣∈Γ̂out(𝑢)

|

𝑢∈𝒰

 

where 𝒞 is the set of communities of the graph, 𝑐(𝑣) is the com-
munity that user 𝑣 belongs to. 

A more elaborate approach to aspect-based evaluation is the 
so-called intent-aware scheme, in which one of the most mean-
ingful and widely used metrics is ERR-IA [5]. This metric weighs 
down the added value of correctly predicted links in the ranking 
(for a given user) when the community of the recommended end-
point already occurs above in the ranking: 

ERR-IA(𝐸̂|𝒢, 𝐸test, 𝒞) =
1

|𝒰|
∑ ∑ 𝑝(𝑐|𝑢) ERR-IA(𝑢, 𝑐)

𝑐∈𝒞𝑢∈𝒰

 

ERR-IA(𝑢, 𝑐) = ∑
1

𝑘
𝑝(rel|𝑣𝑘, 𝑐) ∏ (1 − 𝑝(rel|𝑣𝑗 , 𝑐))

𝑘−1

𝑗=1

|Γ̂out(𝑢)|

𝑘=1

 

where 𝑣𝑘 is the user at position 𝑘 in the ranking of recommended 
links for user 𝑢, 𝑝(rel|𝑣, 𝑐) is commonly defined as 𝑝(rel|𝑣, 𝑐) =

0.5 · [(𝑢, 𝑣) ∈ 𝐸test ∧ 𝑐(𝑣) = 𝑐], and 𝐸test represents the set of test 
links (held out from the prediction algorithms) with which the ac-
curacy of link prediction is evaluated. The probability 𝑝(𝑐|𝑢) that 
a community is pertinent to a user can be estimated by the ratio 
of followers of 𝑢 that belong to 𝑐: 

𝑝(𝑐|𝑢) =
|{𝑣 ∈ 𝑐(𝑢)|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸test}|

∑ |{𝑣 ∈ 𝑐′(𝑢)|(𝑢, 𝑣) ∈ 𝐸 ∪ 𝐸test}|𝑐′∈𝒞
 

6 CONCLUSIONS 
Prediction accuracy seems like a rather partial perspective for link 
prediction considering the new dimensions and role that social 
networks are acquiring, both as a service, a communication plat-
form and a business. From the perspective of an effect on network 
evolution, prediction accuracy would just target network density 
by correctly predicting as many edges as possible. We find it nat-
ural to consider further qualities when setting the target for link 
prediction technology, taking into account that links are not nec-
essarily all equally useful. In this paper we reflect on such per-
spectives and briefly lay out some possibilities in this direction.  

We have implemented and tested the proposed metrics and, at 
the time of this writing, we are testing a wide array of link pre-
diction algorithms [1,18,21,22,27,34] in order to empirically ob-
serve their behavior in light of the proposed dimensions, and an-
alyze how the metrics relate (complement, correlate, etc.) to each 
other. We are also exploring how the discussed metrics can be ex-
plicitly targeted, either by devising new prediction algorithms 
that take the new dimensions into account, or by a post-prediction 
optimization of the output of an initial accuracy-oriented predic-
tion algorithm, taking the desired metric as a second objective (by 
greedy re-ranking, multi-objective optimization, etc. [4,20]).  

While the benefit of accuracy is easy to motivate, we still need 
to understand better what the network perspectives discussed 
here imply in terms of their desirability and value for the people 
in the network, or any other concerned party (platform owner, 
network data consumers, etc.). For instance, shortening distances 
seems good for everyone: anyone can reach more people through 
fewer introductions by common friends [26]. Connecting distant 
people exposes them to the risk of an enriching experience. En-
hancing the degree equality or promoting long-tail users helps 
avoid the disengagement of less involved people, and the satura-
tion of hubs. Weak links may alleviate social bubbles [28] and/or 
enhance the speed and diversity of the information flow through 
the network [10,37]. Exclusive links between communities may 
bring strategic value [12], and so forth. This is certainly domain 
dependent, but can probably be studied also at some level of ab-
straction, which we envisage as future work.  
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