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ABSTRACT 
Contact recommendation has become a common functionality in 
online social platforms, and an established research topic in the 
social networks and recommender systems fields. Predicting and 
recommending links has been mainly addressed to date as an ac-
curacy-targeting problem. In this paper we put forward a different 
perspective, considering that correctly predicted links may not be 
all equally valuable. Contact recommendation brings an oppor-
tunity to drive the structural evolution of a social network to-
wards desirable properties of the network as a whole, beyond the 
sum of the isolated gains for the individual users to whom recom-
mendations are delivered –global properties that we may want to 
assess and promote as explicit recommendation targets.  

In this perspective, we research the definition of relevant di-
versity metrics drawing from social network analysis concepts, 
and linking to prior diversity notions in recommender systems. In 
particular, we elaborate on the notion of weak tie recommenda-
tion as a means to enhance the structural diversity of networks. 
In order to show the signification of the proposed metrics, we re-
port experiments with Twitter data illustrating how state of the 
art contact recommendation methods compare in terms of our 
metrics; we examine the tradeoff with accuracy, and we show that 
diverse link recommendations result in a corresponding diversity 
enhancement in the flow of information through the network, 
with potential implications in mitigating filter bubbles. 
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1 INTRODUCTION 
Contact recommendation has gained importance as a key and per-
vasive functionality in large-scale online social networking industry 

[20,24]. It has likewise received increasing attention as a relevant and 
compelling scientific problem [5,25,26], also addressed in a related, 
link prediction perspective in the social network analysis field [34,35, 
46]. Predicting and recommending links has been mainly envisioned 
to date as an accuracy-targeting problem. From a recommendation 
perspective, prediction accuracy can be said to just target the net-
work density by correctly predicting as many edges as possible. 
Density is obviously a major feature for a network to become a use-
ful resource. Yet social networks have many further qualities that 
may enhance their value and performance for their users and busi-
nesses running on the network. Two predicted links being equally 
correct, one may enhance such properties more than the other.  

It would seem natural to therefore consider what recommen-
dation brings to the network from a wider perspective. Contact 
recommendation brings an opportunity to drive the structural 
evolution towards desirable properties of the network as a whole, 
beyond the sum of the isolated gains for the individual users to 
whom recommendations are delivered –global properties that we 
may want to assess and promote as explicit recommendation tar-
gets. Network science has produced a vast array of analysis and 
measurement tools to capture and understand the network struc-
ture and characteristics on manifold dimensions [37]. What net-
work properties are desirable is certainly domain-dependent and 
specific to the purpose of the network.  

In this paper we focus on the structural diversity of social net-
works as such a potential positive characteristic. We elaborate in 
particular on the notion of weak ties, largely studied in the social 
network analysis literature [4,9,10,22]. Starting from a general-
ized, structural definition of weak link [16], we consider both 
straightforward and more elaborate metric definitions. In order to 
test and observe how the proposed metrics behave, we run exper-
iments with Twitter data where we compare the effect of state of 
the art contact recommendation algorithms in terms of the met-
rics. We further examine the accuracy tradeoff over greedy opti-
mizations of the metrics at gradually aggressive diversification 
levels. Finally, we find grounding motivation for the proposed 
metrics by confirming their potential effect on the diversity in the 
information flow through the network, as a positive effect from 
the perspective of mitigating filter bubbles [38]. 

2 RELATED WORK 
The problem of recommending contacts in social networks gained 
interest in the early 2000’s as an application example of link pre-
diction [1,34]. Many specific algorithms have been proposed for 
recommending people, based on the network structure around 
target users [25], user-generated content [26], or random walks to 
farther regions of the network [5,20,24]. These functionalities are 
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now present in mainstream social platforms, such as Twitter [24], 
Facebook or LinkedIn. 

Link prediction was originally envisaged as a domain-inde-
pendent problem relevant to many different types of complex net-
works besides the social domain [1,34,35]. From the recommender 
systems perspective, link prediction can be seen as a common rec-
ommendation task, where the predicted edges are delivered to us-
ers at either end of the links [5,24,25,26]. Taking the social network 
adjacency matrix as the rating matrix, any state of the art recom-
mendation algorithm can be applied straightforwardly [26,28], 
even unaware that users and items are the same thing. And many 
such methods indeed perform quite accurately [40]. Common rec-
ommender system evaluation methodologies and metrics [23,27] 
can be used as well, to assess the accuracy of predictions. 

Research and development in link prediction and contact recom-
mendation has been largely driven towards achieving accuracy, that 
is, maximizing the amount of recommended links that were present 
(though unobserved) in the network [46], or are useful and accepted 
by the target users [13]. A few works have nonetheless considered 
the effects that the algorithms might have on the network on a 
wider perspective, thus providing a background for our work. Most 
authors in this scope have undertaken field studies of working rec-
ommenders and algorithms from an external, “factual” stance.  

Daly et al. [15] were among the first to bring attention to the 
action of recommendation on the global and local network struc-
ture. They observed how different recommendation algorithms had 
a diverse incidence on such network characteristics as the degree 
distribution skewness, node betweenness and triadic closure. In a 
similar spirit, Su et al. [42] analyzed the Twitter “Who To Follow” 
service, finding a popularity reinforcement effect in the degree dis-
tribution, along with an increase in triadic closure. Very recently, 
Aiello and Barbieri [3] studied the topological impact of the contact 
recommendation functionalities of Flickr and Tumblr at the local 
ego-network level, in terms of the popularity of linked nodes, and 
the overlap between recommendations as a primary measure of di-
versity. Huang et al. [29] speculated on the interest of procuring 
diversity in recommendation; in a study with the LinkedIn “People 
You May Know” recommender, they found a tradeoff with recom-
mendation accuracy, but a positive correlation with user engage-
ment, using simple topological diversity metrics such as the number 
of recommended connected components and triangles. From a dif-
ferent take on demographic rather than structural diversity, Stoica 
et al. [41] studied the potential inequality reinforcement effect of 
recommendation, and suggested a principled means to counter it. 

Our research aims to take a step further from the observational 
analysis, by formalizing structural diversity metrics that can be 
systematically applied to evaluate and enhance recommendations 
from this perspective. We find a precedent of this aim in work by 
Parotsidis et al. [39], who also considered optimizing for network 
properties beyond accuracy, though their focus was on shortening 
distances –a different dimension from the one we focus on here. 
Moreover, beyond this, we seek connections between the pro-
posed metrics and measurable positive effects on network func-
tionalities, specifically in the transmission of information.  

Diversity is also being the object of a sizeable body of research 
in the recommender systems field, leading to a wide and well-

known variety of diversity notions, theories, metrics, and algo-
rithms [2,12,30,45]. Our present research brings those perspec-
tive-widening views to the specific context where recommenda-
tion operates on social network structures, where diversity takes 
on new meanings and connections to network analysis concepts. 

3 PRELIMINARIES 
We shall use the following notation in the rest of the paper. We 
denote by ࣡ ൌ 〈࣯, 〈ܧ  the graph structure of a social network, 
where ࣯ is the set of people in the network, and ܧ ⊂ ࣯∗

ଶ repre-
sents the set of relations between users in the network, ࣯∗

ଶ denot-
ing the set of all distinct user pairs. For each person ݑ ∈ ࣯ we re-
fer as Γሺݑሻ to her set of connections in the graph. Since we will 
consider directed networks, we shall differentiate between the in-
coming and outgoing neighborhoods Γሺݑሻ and Γ௨௧ሺݑሻ. 

We state the contact recommendation problem for a given tar-
get user ݑ as identifying a subset of users Γ௨௧ሺݑሻ ⊂ ࣯ ∖ ൫ሼݑሽ ∪
Γ௨௧ሺݑሻ൯ that the user is likely to be interested in establishing a 
connection with. The accuracy of recommended contacts can be 
evaluated by common ranking-oriented metrics such as precision, 
recall, nDCG, based on the set of predicted links that actually sat-
isfy the users, to which we can refer as the relevant recommenda-
tions. Relevance information can be obtained in different ways. In 
offline evaluation, a set of links can be hidden from the recom-
mendation algorithms, and used as relevance ground truth, while 
the rest of links are fed to the algorithms as training data. 

In order to evaluate recommended contacts beyond accuracy 
in terms of their effect on a network ࣡ ൌ 〈࣯,  we shall consider ,〈ܧ
the extended network ࣡ᇱ ൌ 〈࣯, -ᇱ〉 that would result if users acܧ
cepted all the recommended links, and added to them to the net-
work. That is, ܧᇱ ← ܧ ∪ ܧ  where ܧ ൌ ሼሺݑ, ሻݒ ∈ ࣯∗

ଶ|ݑ ∈ ࣯ ∧ 
ݒ ∈ Γ௨௧ሺݑሻൟ is the set of all recommended edges. When consid-

ering the extended network, Γ௨௧ሺݑሻ can be, typically, the top ݇ 
users in the ranking of recommended contacts for ݑ. Assuming all 
top ݇ recommendations are going to be accepted is naturally quite 
strong and not realistic as a literal assumption; however, it helps 
envision and assess how the network may potentially change by 
the effect of a recommendation algorithm.  

4 STRUCTURAL DIVERSITY 
Diversity has been a major broad notion of interest in social net-
work analysis, where it takes on different –often interrelated– 
meanings [9,16,22,43]. In this context, diversity has been related 
to such notions as the variety of people types in the network (e.g. 
cultural diversity, professional diversity, gender, age, etc.) [10], or 
the variety of relationships (family, friendship, work, etc.), involv-
ing side-information [7]. Further notions have been defined just 
in terms of the network topology, broadly related to the non-re-
dundancy of network structures [9,16,22]. Social diversity has 
been found to bring benefits at different levels both for individuals 
and the network as a whole, ranging from information and inno-
vation spread efficiency [16,43], to better professional and busi-
ness performance [9,10], or even better health [7]. 

Most structural diversity notions revolve around the notion of 
weak tie [4,16,22]. Tie strength can be defined in terms of what 
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the tie stands for in the domain where it is established, and how 
intense are the bond and interaction it represents: “the amount of 
time [involved in the relationship], the emotional intensity, inti-
macy (mutual confiding) and the reciprocal services which charac-
terize the tie” [22]. From a domain-independent perspective, it is 
common to define the weakness of a link in terms of its structural 
properties [16,22], by assessing to what extent the link is not re-
dundant. Inasmuch as weak links may foster novelty and effi-
ciency, they can be a valuable complement of strong links, both 
for the individual and the network as a whole. 

Link redundancy can be assessed in many different ways. For 
instance Granovetter related weakness to such sufficient condi-
tions as: removing the link would break a connected component 
apart (global bridge), or the link connects people without common 
acquaintances (local bridge) [22]. These original notions were en-
ticing and precursory; following Granovetter’s lead, we find more 
informative generalizations for our purposes. In particular, De 
Meo et al. [16] defined weak links as the ones that run across mod-
ular communities –a broader concept we will elaborate upon.  

4.1  Global Diversity: Weak Ties 
The weak tie notion we consider thus relies on a subdivision of 
the social network into communities. When this information is 
not explicit, a community detection algorithm can be used [14,19]. 
This makes any metric defined thereupon dependent on the detec-
tion method. De Meo et al. [16] showed that this weak tie definition 
is nonetheless fairly robust to the choice of detection algorithm.  

A classical metric for quantifying the presence of weak ties 
given a community partition ࣝ  of the network is the so-called 
modularity [14], which compares the number of links inside com-
munities (strong ties) to the expected number we would find in a 
random network generated by a configuration model [37], that is, 
a random network keeping the same node degrees. Generalized to 
directed networks, can be defined as: 

modሺ࣡ᇱ|ࣝሻ ൌ
∑ ሺܣ௨௩ െ |Γ௨௧ሺݑሻ||Γሺݒሻ| ⁄|ᇱܧ| ሻሺ௨ሻୀሺ௩ሻ௨,௩∈࣯

|ᇱܧ| െ ∑ ሺ|Γ௨௧ሺݑሻ||Γሺݒሻ| ⁄|ᇱܧ| ሻሺ௨ሻୀሺ௩ሻ௨,௩∈࣯
 

where ܿሺݑሻ is the community user ݑ belongs to, ܣ is the adjacency 
matrix for the graph (that is, ܣ௨௩ ൌ 1 ⇔ ሺݑ, ሻݒ ∈  ᇱ), and ௗ isܧ
equal to 1 when ܿ݀݊ is true. Since low modularity indicates high 
diversity, we define the modularity complement (MC) metric 
as a linear transformation ranging in [0,1], where high and low 
values reflect high or low structural diversity, respectively: 

MCሺ࣡ᇱ|ࣝሻ ൌ
1 െmodሺ࣡ᇱ|ࣝሻ

2
 

A limitation of the MC metric is that it simply values the raw 
number of links crossing communities. It might be yet more inter-
esting though to distinguish whether the weak links, valuable as 
they may be, are concentrated on a few pairs of communities, or 
are instead more widely distributed across many community 
pairs. Fig. 1 illustrates this issue. Based on this consideration, we 
refine the notion by De Meo et al. [16], by taking into account not 
just the redundancy involved in intra-community edges (as the 
weak tie notion does), but also the redundancy between weak ties, 
meaning whether they bridge the same or different communities. 
We hypothesize that the presence of many and well-distributed 
weak ties across many communities might be yet more beneficial 
at the global level. 

A well-known measure of distribution fairness is the Gini in-
dex [18], which we can apply to the frequency (the distribution) 
of community pairs among the end points of weak ties, as a meas-
ure of how well-spread they are. Again, to have the metric orien-
tation positively aligned with structural diversity, we shall take 
the complement of the Gini index, defined as follows. Given a 
community partition ࣝ ൌ ሼܿଵ, … , ܿሽ, we count the set of edges 
crossing each two communities ܿ, ܿ ∈ ࣝ: 

݊ ൌ ห൛ሺݑ, ሻݒ ∈ ሻݑᇱหܿሺܧ ൌ ܿ ∧ ܿሺݒሻ ൌ ܿൟห	

We count and sum, on the other hand, the number of all (struc-
turally) strong ties, that is, the edges between people in the same 

community: ݊ ൌ ∑ ݊
|ࣝ|
ୀଵ . Now we put together all these counts 

into ܺ ൌ ൛݊ห݅ ് ݆ൟ ∪ ሼ݊ሽ , and we sort ܺ  in increasing order 
ܺ → ,ଵݔ〉 ,ଶݔ … ,  . We then define the community edge Gini	ே〉ݔ
complement (CEGC) as the complement of the Gini index of ܺ: 

CEGCሺ࣡ᇱ|ࣝሻ ൌ 1 െ
1

ܰ െ 1
ሺ2݅ െ ܰ െ 1ሻ

ݔ
|ᇱܧ|

ே

ୀଵ

	

where ܰ ൌ |ܺ| ൌ |ࣝ|ଶ െ |ࣝ|  1. Fig. 2 illustrates how the metric 
is computed. It is easy to understand that CEGC rewards a high 
number of weak links and low redundancy between them at the 
same time. The metric reaches value 0 when either all the links in 
the network run across the same two communities or there are no 
weak links at all; and value 1 when the same amount of edges 
crosses every pair of communities, and a few links (as many as the 
ones crossing any pair of communities) stay inside communities.  

 

(a) Weak link redundancy (b) Weak link diversity 

Figure 1. Redundant vs. spread weak tie distribution over
communities. 

 

Figure 2. Community Edge Gini Complement example. In 
this case we have  ൌ   , ൌ  ൌ  , 	 ൌ  ൌ
 ൌ   , ൌ ૠ , therefore ࢄ → 〈, , , , , ૠ〉 , which 
results in ۱۳۵۱ሺऑᇱ|ऍሻ ൌ . ૠૢ. 

ଵܿ
ܿଷ

ܿଶ
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4.2  Local Redundancy: Transitive Closure 
Complementary to the global diversity measures based on weak 
ties, we may consider triad closure as the smallest unit of struc-
tural redundancy. We may hence use the clustering coefficient for 
this purpose [37], which counts the ratio of closed triads in the 
network. Once again, in order to define a metric positively aligned 
with structural diversity levels, we take the clustering coeffi-
cient complement (CCC): 

CCCሺ࣡ᇱሻ ൌ 1 െ
|ሼሺݑ, ,ݒ ,ݑሻ|ሺݓ ,ሻݒ ሺݒ, ,ሻݓ ሺݑ, ሻݓ ∈ |ᇱሽܧ
|ሼሺݑ, ,ݒ ,ݑሻ|ሺݓ ,ሻݒ ሺݒ, ሻݓ ∈ ᇱܧ ∧ ݑ ് |ሽݓ

	

5 RECOMMENDATION EXPERIMENTS 
To get an initial grasp of how the proposed metrics discern the 
behavior of common contact recommendation algorithms, and 
draw some insights and a better understanding of what the met-
rics capture, we run a first experiment where we test them on two 
Twitter data samples.  

5.1 Data and Task Setup 
We run our experiment over dynamic interaction networks of 
Twitter users, where an edge is present in the network ሺݑ, ሻݒ ∈  ܧ
if ݑ has replied, mentioned or retweeted a tweet posted by ݒ. We 
download network data in a snowball sampling approach [21] us-
ing the public Twitter REST API as follows. Starting from a seed 
user, we extract a sample of tweets posted by that user. Then, we 
extract the set of outgoing interaction links induced by the re-
trieved tweets, that is, the set of users that were retweeted, replied 
to or mentioned in the downloaded tweets. Those users are added 
to a queue, from which the next node is selected and the explora-
tion continues until a desired number of users is retrieved.  

We test two user tweet sampling approaches: a) all tweets 
posted by each user in a fixed period of time, and b) the ݊ most 
recent tweets of each user. We thus obtain two datasets: one based 
on all tweets posted by the retrieved users between 16th June and 
16th July 2015, to which we shall henceforth refer as the “1 month 
dataset”; and one based on the last ݊ ൌ 200 tweets posted by the 
users (the maximum retrievable amount in a single call to the 
API), to which we shall refer as the “200 tweets dataset”. Table 1 
shows the size and details of the obtained datasets. 

We evaluate the accuracy of recommendations in an offline ap-
proach based on a temporal network split into training data (which 
is supplied as input to the contact recommendation algorithms) 
and test data (which is used to assess which recommendations 
match links that were created in the test period). In the 1 month 
dataset, we take the interactions defined by tweets posted in the 
three first weeks (until 9th July 2015) as the training set, and the 
remaining links as the test set. In the 200 tweets dataset, interactions 
included in the first 80% of the tweets define the training graph, and 
the rest the test graph. If the same link appears in both training and 
test, it is removed from the test network. Table 1 shows the network 
split details. For relevance-oriented accuracy metrics such as preci-
sion and recall [6] a recommended contact ݒ is considered relevant 
for a target user ݑ if an edge ሺݑ,   .ሻ is present in the test networkݒ

In our experimental setup, we exclude from recommendations 
all the reciprocating links, that is, we do not recommend people 

who follows back the target user. There are two reasons for this: 
first, social platforms like Twitter already notify users when 
someone starts following them, so the recommendation would be 
redundant; second, the reciprocity ratio in Twitter is very high, 
and hence would trivialize recommendations and distort the ac-
curacy evaluation. 

 As explained in section 4.1, community-based metrics require 
a network subdivision into communities. We tested different com-
munity detection algorithms for that purpose and, consistently 
with observations by De Meo et al. [16], we found that the com-
parison between recommendation approaches was broadly insen-
sitive to the choice of community detection algorithm. We there-
fore report results using just one of the tested methods, namely 
the Louvain algorithm [8], one of the most widely used and effec-
tive in the community detection literature. 

5.2 Recommendation Algorithms 
We test our metrics on 8 different contact recommendation algo-
rithms, selected based on their popularity and performance [40], 
which we can classify in five groups: 
 Neighborhood-based: We implement three common algo-

rithms based on different measures of neighborhood overlap 
between the target and the recommended user: Most common 
neighbors (MCN) based on the plain neighborhood intersec-
tion [36], the Jaccard neighborhood similarity [31], and the 
Adamic-Adar coefficient [1,34]. 

 Random walks: We implement the personalized SALSA algo-
rithm applied in the Twitter ‘Who-to-follow’ system [20,24,33], 
only without restricting the circle of trust, for simplicity. 

 Content-based algorithms: As a representative option, we 
use the cosine similarity between users as the ranking function 
[26], where users are represented by the centroid of the tf-idf 
vectors [6] of the tweets posted by their neighbors. Whether 
the neighborhood includes outgoing, incoming links, or both, 
is a configuration option of the algorithm, which we tune in 
the same way as any other parameters. 

 Adaptation of recommender system algorithms: We 
adapt a top-performing matrix factorization algorithm (Im-
plicit MF) [28] to the task of recommending users.  

 Reference baselines: We include two trivial non-personal-
ized approaches, most-popular and random recommendation, 
as a sanity-check and rock-bottom reference.  
We tune the free parameters for each algorithm by a simple 

grid search targeting P@10. In the MCN, Jaccard, Adamic-Adar, 
and content-based algorithms, we also selected the optimal neigh-
borhood direction (in, out, undirected) for the target and candidate 
users. 

5.3 Accuracy and Structural Diversity 
Along with the parameter settings for the tested contact recom-
mendation algorithms, Table 2 shows the accuracy and structural 
diversity values at cut-off 10. As explained in section 3, for struc-
tural metrics this cutoff means that the top 10 recommended by 
each algorithm are added to the training network ࣡ to form the 
extended network ࣡ᇱ, on which the metrics are computed.  
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Consistently with prior experiments [40], we observe that Im-
plicit MF stands out above the rest of the algorithms in all datasets 
in terms of accuracy, followed by Adamic-Adar and MCN. In 
terms of structural diversity metrics, the top approaches are not 
personalized: popularity and random recommendation. This is to 
be expected: creating weak links outside communities is much 
more likely when the topological placement of the target user is 
simply ignored by a non-personalized algorithm.  

A closer look at these two recommendations is illustrative of the 
nuances that distinguish the diversity metrics. Random recommen-
dation trivially optimizes CEGC: a fair spread of links across com-
munities is quite likely when the links are placed uniformly at ran-
dom. Popularity in contrast concentrates links on fewer communi-
ties: the ones the top most popular users belong to, hence incurring 
in some redundancy in comparison. However, random links seem 
to fall inside communities slightly more often (in raw numbers) than 
linking to the same few popular users, as reflected by the MC met-
ric. Finally, CCC shows that adding links to highly connected people 
seems to close very few triangles –slightly less than random. Net-
work hubs have many neighbors that are not shared by the average 
target user; those are triads that are not transitively closed. 

Among personalized algorithms, SALSA produces the most di-
verse network structures in terms of the three metrics. Implicit MF 

also stands out, especially in the clustering coefficient comple-
ment. Adamic-Adar, MCN and Jaccard, unsurprisingly, obtain low 
values for MC and CCC, since these methods favor people with 
many common neighbors, thus likely closing triads, and likely 
within the same community. Jaccard is particularly notorious in 
CCC, as closing as many triads as possible is literally the objective 
of this recommender. Finally, the content-based approach illus-
trates to what extent the metrics may measure complementary 
nuances: while this algorithm seems to produce a fair number of 
well-distributed weak links according to MC and CEGC, it seems 
to close quite an amount of transitive triads as captured by CCC. 

6 EFFECTS ON INFORMATION DIVERSITY 
We have so far observed how the proposed metrics describe the 
effect of contact recommendation on the structural diversity of 
networks. In order to assess to what extent the proposed perspec-
tive may find deeper implications, we analyze how the structural 
dimension of contact recommendation may have consequences in 
the behavior of the network, in particular, in the diffusion of in-
formation, one of the foremost functionalities of online social net-
works. We aim to test, in particular, the hypothesis that the more 
structurally diverse is the recommendation, the more diverse and 

Table 1. Dataset details. 

  Complete network Training network Test network 

Dataset  #Users #Edges #Users #Edges #Communities #Users #Edges 
1 month  10,019 234,869 9,528 170,425 8 7,902 57,846 

200 tweets  10,000 164,653 9,985 137,850 10 5,652 21,598 

Table 2. Accuracy and structural diversity of state of the art contact recommendation algorithms. The recommenders are
ordered by decreasing P@10. The cells for precision and recall are colored from white (lowest values) to blue (higher values), 
and structural diversity metrics from red, when lower than in the training graph, to blue when higher. The highest value of
each column is highlighted in bold. All pairwise differences in precision and recall are statistically significant (2-tailed Stu-
dent t-test at  ൏ . ), except for the precision of Adamic-Adar vs. Implicit MF on the 200 tweets dataset, and for recall of
Jaccard vs. Centroid CB in the 1 month dataset and SALSA vs. Adamic-Adar and Jaccard in 200 tweets. Structural metrics yield 
a single global value rather than an average per user, hence common statistical significance tests are not directly applicable.

 Recommender Parameter settings P@10 Recall@10 MC CEGC CCC 

1 
m

on
th

 

Implicit MF ݇ ൌ 260, λ ൌ 150, α ൌ 40 0.0625 0.1060 0.1550 0.0447 0.9766 
Personalized SALSA Authorities, α ൌ 0.99 0.0577 0.0990 0.1656 0.0447 0.9819 
Adamic-Adar und, in, und 0.0505 0.0697 0.1487 0.0413 0.9748 
MCN und, in 0.0476 0.0647 0.1461 0.0403 0.9746 
Popularity - 0.0234 0.0409 0.2947 0.0613 0.9890 
Jaccard und, in 0.0169 0.0209 0.1464 0.0434 0.9652 
Centroid CB in 0.0156 0.0198 0.1652 0.0498 0.9627 
Random - 0.0006 0.0009 0.2797 0.0901 0.9839 
Training graph -  - - 0.1464 0.0390 0.9829 

20
0 

tw
ee

ts
 

Implicit MF ݇ ൌ 300, λ ൌ 150, α ൌ 40  0.0236 0.0589 0.2132 0.1326 0.9520 
Adamic-Adar und, in, und  0.0233 0.0540 0.2076 0.1180 0.9447 
MCN und, in  0.0222 0.0499 0.2048 0.1138 0.9433 
Personalized SALSA Authorities, α ൌ 0.99  0.0208 0.0516 0.2369 0.1412 0.9594 
Centroid CB in  0.0157 0.0333 0.2154 0.1251 0.9182 
Jaccard und, in  0.0132 0.0306 0.2041 0.1195 0.9065 
Popularity -  0.0098 0.0221 0.3371 0.1559 0.9822 
Random -  0.0003 0.0007 0.3317 0.2276 0.9795 
Training graph -  - - 0.2081 0.1134 0.9559 
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novel (non-redundant) will be the information flow through the 
network by consequence of recommendation. 

6.1 Structural Diversity Enhancement 
In order to check how diversity metrics correlate with information 
flow properties, we start by defining a procedure to optimize a 
given diversity metric by gradual aggressivity levels. As a common 
approach, starting with a well-performing baseline contact rec-
ommendation algorithm (in terms of accuracy), we apply a greedy 
reranking that partially targets the metric of interest [12,44]. 
While typical greedy optimization procedures target a local objec-
tive that depends on the ranking for a single user [11], in our case 
the targeted metrics depend on all recommendations together. 

We therefore define the global optimization problem as fol-
lows. Given a recommendation ܧ	with rankings defined by a 
function ݂: ܧ → Թ (the recommender “score”), we seek new rank-
ings that balance the accuracy achieved by the initial recommen-
dation, and the targeted diversity metric. Inasmuch as we consider 
a cutoff of interest ݇ for the diversity metric, defining this new 
ranking amounts to selecting a subset ࣭ ⊂ ܧ , where ࣭ ൌ ⋃ ࣭௨௨∈࣯  
consists of subsets ࣭௨ ⊂ ሼݑሽ ൈ Γ௨௧ሺݑሻ of size |࣭௨| ൌ ݇ for each 
user. It is common to combine this dual goal by targeting a linear 
combination of the two objectives (original ranking –for accu-
racy– plus diversity), which we can express as: 

࣭ ൌ arg	max
ௌ⊂ா:|ௌೠ|ୀ

	ሺ1 െ λሻ  ݂ሺݑ, ሻݒ
ሺ௨,௩ሻ∈ௌೠ௨∈࣯

 λ	ߤሺ࣡ௌ
ᇱ ሻ 

where ߤ is the targeted diversity metric, and ࣡ௌ
ᇱ ൌ 〈࣯, ܧ ∪ ܵ〉 de-

notes the extension of a network ࣡ ൌ 〈࣯,  by adding the links 〈ܧ
in a recommendation subset ܵ. The parameter λ adjusts how ag-
gressive is the reranking, from no change at λ ൌ 0, to ignoring the 
initial ranking at λ ൌ 1.  

Having set the objective, our greedy procedure works as fol-
lows (see Algorithm 1). For each individual ranking ܵ௨, starting 
from the top down, we consider swapping the ݅-th element in the 

top ݇ of ܵ௨ with the user at position ݆ below ݇ that maximizes the 
following greedy objective function: 

߶ሺ݆|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ ൌ ሺ1 െ λሻ	norm൫݂ሺܵ௨ሾ݆ሿሻ൯ 

λ	normቀߤ൫࣡ௌ〈௨:/〉@	
ᇱ ൯ቁ 

where ܵ〈ݑ: ݅/݆〉 denotes swapping the ݅-th and ݆-th elements in 
ܵ௨, and @݇ indicates taking the subset of elements ranked in the 
top ݇ of each ranking ܵ௩ ⊂ ܵ for all users ݒ ∈ ࣯. This best swap 
is applied only if ߶ሺ݆|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ  ߶ሺ݅|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ, that is, if 
the target function is improved. As is common, we normalize the 
two components of the linear combination in ߶, as expressed by 
normሺ⋅ሻ, to make their aggregation meaningful [44]. We use the 
rank-sim normalization scheme [32] for this purpose. 

Fig. 3 shows the effect of reranking for the three diversity met-
rics defined in section 4. As initial recommendations we take the 
top 100 contacts returned by Implicit MF (the most accurate in our 
experiments in section 5), and we target the metrics at a ݇ ൌ 10 
cutoff. For the optimization of MC, we simplify the greedy diversity 
objective to just counting whether the recommended link is weak 
or not. For CEGC, we require the edge ܵሾ݆ሿ to be weak as an addi-
tional condition for a swap to be applied in the reranking procedure.  

The figure shows the clear and typical diversity-accuracy 
tradeoff [12] in all cases. We also see that rerankings are con-
sistent in that each is best at enhancing the metric it optimizes for 
–not just on the diversity axis, but also in the tradeoff with accu-
racy. We also see that the MC and CEGC optimizers have a com-
parable effect in both CCC and even MC, which makes sense as 

ALGORITHM 1: Global Greedy Reranking 

Input: ܧ ⊂ ࣯∗
ଶ  original recommendations 

 ݂: ܧ → Թ original recommendation ranking function 
 metric to optimize ߤ 
 ݇ diversification cutoff 
 λ ∈ ሾ0,1ሿ degree of diversification  
 ࣡ ൌ 〈࣯,  training graph 〈ܧ
Output: ܵ modified recommendations (a set of ordered lists)
begin 
	 ܵ ← sort൫ܧ, ݂൯	//	Edges are grouped by source node and sorted by ݂
	 for	ݑ ∈ ࣯	do	
	 	 for	݅ ← 1	to	݇	do	
	 	 	 ݆ ← argmax

:ழஸ|ௌೠ|
߶ሺ݆|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ	//	ܵ௨ ≡	ranking for user ݑ in ܵ	

	 	 	 if	߶ሺ݆|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ  ߶ሺ݅|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ	then	swapሺܵ௨, ݅, ݆ሻ	
	 return	ܵ	
end 
 

Function ߶ሺ݆|ܵ, ,ݑ ݅, ݂, ,ߤ λሻ		//	The	dual	objective function 
begin 

 return ሺ1 െ λሻ	norm൫݂ሺܵ௨ሾ݆ሿሻ൯  λ	normቀߤ൫࣡ௌ〈ݑ:݅/݆〉@	
ᇱ ൯ቁ 

end 
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Figure 3. Plot of diversity (࢟ axis) against P@10 (࢞ axis) for
the three diversity metrics, and the corresponding rerankers. 
Points on the curves represent reranked recommendations 
for ૃ  ranging from 0 (undiversified initial recommenda-
tion) to 1 (maximum diversity), by increments of 0.1.
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both diversifiers promote a similar number of weak links, as one 
should expect. However, the graphics for the CEGC metrics (bot-
tom of figure) evidence our point as to what this metric aims to 
capture: not all weak ties are equally weak, which plain modular-
ity optimization fails to take into proper account. 

6.2 Information Diffusion: Novelty, Diversity 
and Speed 

We now analyze the effect of structurally diverse recommenda-
tions on information spread based on the messages (tweets) that 
users post and pass on in the network. We shall observe three main 
dimensions in the message flow: speed, novelty, and diversity. 

Though not the primary focus of our analysis, we keep an eye 
on the speed of propagation, as one of the most commonly ana-
lyzed network efficiency features in diffusion processes [17]. We 
measure it as the sum of the number of tweets received by each 
user in the network at a given moment in time: 

speedሺݐሻ ൌ | ௨ࣧሺݐሻ|
௨∈࣯

 

where ௨ࣧሺݐሻ denotes the set of messages (tweets) that user ݑ has 
received since the diffusion started to be measured, until time ݐ.  

In order to measure information novelty and diversity we use 
tweet hashtags as a readily available indicator of information top-
icality. For this purpose, we shall represent tweets as sets of tags: 
the ones the tweet contains. If  denotes the set of all hashtags, 
then tweets are subsets ݅ ⊂ . Based on this representation, we 
assess the novelty a tweet carries for a user who receives it simply 
by the number of tweet hashtags that the user had never used her-
self before. Specifically, we define the external hashtag rate 
(EHR) of the information flow as: 

EHRሺݐሻ ൌ
∑ ∑ |݅ ∖ ௨

ሺݐሻ|∈ ೠࣧሺ௧ሻ௨∈࣯

∑ ∑ |݅|∈ ೠࣧሺ௧ሻ௨∈࣯
 

where ௨
ሺݐሻ ൌ ⋃ ݅∈ ೠࣧ

బሺ௧ሻ  denotes the set of tags used by ݑ in 

the tweets she posted up to time ݐ –denoted as ௨ࣧ
ሺݐሻ. 

As to diversity, we consider that the information is diverse to 
the extent that different hashtags are evenly distributed over the 
population through the tweets. We resort again to the (comple-
ment of the) Gini index as a measure of distributional diversity 
[18], and define the hashtag Gini complement (HGC) as: 

HGCሺݐሻ ൌ 1 െ
1

|| െ 1
ሺ2݆ െ || െ 1ሻ	൫ ݄|ݐ൯

||

ୀଵ

 

where ݄ denotes the ݆-th least frequently spread hashtag, and: 

ሻݐ|ሺ݄ ൌ
|ሼݑ ∈ ࣯|݄ ∈ ௨ሺݐሻሽ|

∑ |ሼݑ ∈ ࣯|݄∗ ∈ ௨ሺݐሻሽ|∗∈
 

where ௨ሺݐሻ ൌ ⋃ ݅∈ ೠࣧሺ௧ሻ  denotes the set of tags in the tweets re-
ceived by ݑ. 

6.3 Diffusion Procedure 
In order to measure how the recommendation can impact infor-
mation diffusion, we simulate the publication and transmission of 
information through tweets and retweets over a network ࣡ᇱ ex-

tended by different recommendations. We base the simulation on 
an actual set of tweets –the same we have used in the experiments 
reported in the previous sections– where for every user we have a 
list of tweets she has posted, and a list of tweets she has retweeted.  

We follow an iterative simulation procedure that roughly mim-
ics the main information passing actions on Twitter. At each step 
(a “time point”) every user randomly selects (without replacement) 
and posts one of her authored tweets, which is passed on to all her 
incoming neighbors, who add it to a personal inbox (a timeline) of 
received tweets. Next, every user retweets all the received tweets 
they find interesting, which are in turn received by all users linking 
to them. We consider a user would find a tweet worth retweeting 
if she actually retweeted it for real sometime according to our 
downloaded Twitter data. Hence at every time point, each user 
posts one original tweet, and retweets a few tweets, as long as any 
are available on her lists. When a tweet is received more than once 
by the same user, it is simply ignored (i.e. only the first time counts, 
as on Twitter). The simulation finally stops when all original 
tweets have been posted and all inboxes empty up. 

Note that the way our simulation is configured makes it actu-
ally deterministic for our purposes. Since it applies an exhaustive 
propagation, it is equivalent to a set of graph explorations, one for 
each tweet in the dataset, starting at the user who authored it, 
following all incoming links backwards, and stopping every time 
a user is reached who had not retweeted the tweet in our dataset. 
The resulting search tree for each tweet covers the set of users 
who receive the tweet, which is all we need to measure the out-
comes of interest for our study. The simulation perspective ena-
bles a smooth generalization of our analysis to many other com-
munication protocols one may wish to explore. 

Once we determine the set of tweets that have reached every 
user, we can assess information properties (volume, diversity, 
novelty) by such metrics as defined in the previous section, based 
on the tweet hashtags. 

6.4 Results 
We finally check the effect of structural diversity on the information 
flow by running the three rerankers, targeting MC, CEGC and CCC 
respectively, over the Implicit MF baseline with different intensity 
of diversification, adjusted by the λ parameter. For each reranked 
recommendation (3 rerankers ൈ 11 values of λ, adding to 33 recom-
mendations for each dataset), we run the publication and propaga-
tion of tweets over the network extended by the corresponding rec-
ommendation, as explained in the previous section, and we measure 
the resulting speed, novelty and diversity of the information flow. 

As previously mentioned, we use in this experiment the same 
tweets we downloaded to build a network sample as described in 
section 5.1. In particular, we use the test tweets (the ones posted 
after the temporal split point) containing at least one hashtag  

Table 3. Data description for the information diffusion
experiment. 

Dataset #Tweets #Hashtags (unique) 

1 month 87,837 110,578 (1115) 
200 tweets 21,513 24,623 (378) 
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–they otherwise have no impact on our diversity measures. More-
over, to avoid noise and a heavy-tail distortion, we consider only 
hashtags appearing in at least 25 tweets. Details on the number of 
tweets and hashtags used in our experiment are shown in Table 3. 

Fig. 4 shows the results, as a tradeoff between information flow 
enhancement and the accuracy of the recommended contacts. We 
first of all confirm that the metric that most enhances information 
diversity is CEGC. To the effectiveness of weak links promoted by 
MC, CEGC adds a further redundancy reduction by more carefully 
selecting the weak ties to be promoted. In the 1 month dataset, 
both strategies procure a similar level of information diversity at 
the most aggressive structural diversification level, but at the ex-
pense of an additional accuracy loss in the case of MC. In the 200 
tweets dataset MC underperforms also in terms of diversity. CCC, 
on its side, seems to have a more erratic effect overall, though it 
seems to achieve some diversity enhancement at the most aggres-
sive levels, by an additional accuracy penalization. It therefore 
seems advantageous to take community structure into account, 
which CCC does not. 

In terms of novelty there seems to be no clear winner: the three 
strategies enhance this property to a quite similar degree with 
slight differences. This is consistent with Granovetter’s theory, 
stating that weak links are a source of novel information for peo-
ple [22]. On the other hand, the structural metrics do not seem to 
display a clear effect in terms of propagation speed. A slowdown 
is observed on the 200 tweets data, and mixed effects are seen on 
the 1 month dataset. This shows that diversity and novelty are not 
a trivial reflection of the information volume. 

Overall, we may say that enhancing the community edge Gini 
complement provides the best trade-off in terms of diffusion prop-
erties, structural properties and accuracy.  

7 CONCLUSIONS 
Considering the broad effect that recommending new edges can 
have on the evolution of a social network, beyond just increasing 
their density, seems only natural –more so when massive online 
social networks may me approaching some stage of maturity, be 
it just in terms of their sheer size, towards a stationary, slower 
growth. Inasmuch as contact recommendation may play a sub-
stantial part in shaping the network growth, an opportunity lies 
therein to steer the network evolution towards enhancing profit-
able properties. At a general level, structural diversity is one of 
the widely analyzed characteristics of social networks that have 
been the object of broad study and some speculation as to its im-
plications on the performance of networks and their members, 
and the benefits for the common good from different perspectives 
[4,7,9,10,22,43]. We explore a particular angle to this outlook here, 
by focusing on diversity notions related to specific definitions of 
edge strength and redundancy.  

We show that it is possible to define sound recommendation 
evaluation metrics based on these concepts, and optimization strat-
egies that consistently enhance structural diversity by gradually 
retargeting recommendations towards the corresponding metrics, 
allowing to keep the tradeoff with accuracy at the desired level. 
We further find a practical signification for the proposed recom-
mendation metrics in the positive effect the characteristics they 

measure can have on the behavior of networks as channels for the 
dissemination of relevant information. We focus in particular on 
information diversity and novelty as positive factors in healthy 
social media, and filter bubble mitigation [38]. We introduce a 
novel distinction in the concept of weak links that translates into 
higher specific enhancements in information diversity, compared 
to previously considered structural definitions of weak tie [16,22].  

The directions to continue our research are manifold. Many 
further metrics and notions from social network analysis can be 
adapted to evaluate contact recommendation from the corre-
sponding perspective. Any global objective property found to be 
desirable for networks could be amenable to a similar develop-
ment as we have undertaken here. Identifying such properties is 
in fact a worthy research goal in itself. In the impact on infor-
mation spread, further communication dynamics can be consid-
ered besides the Twitter model, and different information features, 
diversity variants and spaces (e.g. opinion diversity) can be studied. 
The effect of structural recommendation properties on further net-
work functionalities and dynamic processes beyond information 
diffusion can be envisaged as well, such as network growth, ro-
bustness, or influence propagation. Moving beyond the pure ac-
curacy objective in contact recommendation has barely started to 
be explored, and seems like a sensible direction to pursue. 
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