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ABSTRACT 
The cyclic nature of the recommendation task is being increas-
ingly taken into account in recommender systems research. In this 
line, framing interactive recommendation as a genuine reinforce-
ment learning problem, multi-armed bandit approaches have been 
increasingly considered as a means to cope with the dual exploi-
tation/exploration goal of recommendation. In this paper we de-
velop a simple multi-armed bandit elaboration of neighbor-based 
collaborative filtering. The approach can be seen as a variant of 
the nearest-neighbors scheme, but endowed with a controlled sto-
chastic exploration capability of the users’ neighborhood, by a pa-
rameter-free application of Thompson sampling. Our approach is 
based on a formal development and a reasonably simple design, 
whereby it aims to be easy to reproduce and further elaborate 
upon. We report experiments using datasets from different do-
mains showing that neighbor-based bandits indeed achieve rec-
ommendation accuracy enhancements in the mid to long run. 

CCS CONCEPTS  
• Information systems → Recommender systems; Collaborative 
Filtering • Computing methodologies → Reinforcement learning. 
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1 Introduction 
The cyclic nature of the recommendation task is being increas-
ingly taken into account in recommender systems research in the 
last few years [7,8,9,21,23]. In many applications, a considerable 
fraction of the input for recommendation algorithms is obtained 
from the end-users’ reaction and feedback to the algorithms’ out-
put, thus framing interactive recommendation as a genuine rein-
forcement learning problem [19]. In this view, multi-armed bandit 
(MAB) perspectives have been increasingly considered as a natu-
ral approach to cope with the dual role of recommendation: pleas-
ing users in the single next recommendation (exploitation) and 
gaining knowledge about their tastes (exploration) in order to fur-
ther improve user satisfaction in the long run [12].  

In this perspective the field has adapted principles, formula-
tions and solutions from the reinforcement learning area [20]. 

Some of this trend may have put an emphasis on developing ma-
chine learning techniques, taking recommendation as an example 
application domain [5,7,8,21]; resulting algorithms are often tech-
nically involved, computationally complex, not easy to reproduce, 
and/or consider simplified variants of the recommendation task. 
Other work has been undertaken from the perspective of solving 
a recommender system problem, by adapting and elaborating on 
machine learning tools [9,10,12,23]; our present research can be 
framed in this outlook. 

In this paper we develop a simple multi-armed bandit elabora-
tion of neighbor-based collaborative filtering. The approach can be 
seen as a variant of the nearest-neighbors scheme, but endowed 
with a controlled stochastic exploration capability of the users’ 
neighborhood. By a formal development and a reasonably simple 
design our approach aims to be easy to reproduce and further elab-
orate upon.1 Our approach works as a pure collaborative filtering 
algorithm that does not require any side information about items or 
users. Compared to both common collaborative filtering algorithms, 
and prior work on recommendation bandits, our method does not 
require any other parameters than the ones involved in the adapted 
bandit paradigm. We report experiments using datasets from dif-
ferent domains showing that our approach indeed achieves rec-
ommendation accuracy enhancements in the mid to long-run.  

2 Background and Related Work 

2.1 Multi-Armed Bandits 
The multi-armed bandit problem [20] considers a set of actions 𝒜 
–a.k.a. arms– that one has to choose among successively. The se-
lection of an action 𝑎 ∈ 𝒜 at a point in time 𝑡 results in a certain 
reward 𝑅𝑡(𝑎) ∈ ℝ , which can be summarized as a real number. 
The reward is not known until the arm is selected; this uncertainty 
is modeled as an unknown reward distribution for each arm. The 
goal in the bandit problem is simple: decide on a sequence of ac-
tions that maximizes the expected obtained returns ∑ 𝑅𝑡(𝑎𝑡)𝑛

𝑡=1 . 
If the reward distributions of arms are stationary over time, the 

optimal choice would be to select the action with the maximum 
mean reward (so-called “arm value” in the MAB literature) all the 
time. While this mean is unknown, it is possible to build and update 
estimates based on the information gained when selecting arms. One 
can then make conservative decisions by opting for the best arm ac-
cording to estimates based on a few initial observations. But one can 
also invest in trying different arms to gain information and make 
even better future decisions. The solutions to the problem hence 
have to deal with this tension between the exploitation of available 
knowledge for best immediate payoffs, and the exploration of the 
decision space for enhanced knowledge and better future rewards. 

Many solutions to the bandit problem have been developed, 
with different properties and trade-offs. Popular methods include 
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-greedy [20], Upper Confidence Bounds (UCB) [1], Thompson 
sampling [4], EXP3 [2], and multiple variants thereof [1,20]. We 
have selected Thompson sampling as one of the most widely used, 
compact and effective bandit methods to develop our approach. 
Our method is however not particularly dependent on this choice, 
and the adoption of other bandit techniques should be straightfor-
ward, which we envision as future work. 

2.2 Bandit Recommender Systems 
The vision of recommendation as a reinforcement learning prob-
lem can be traced back to nearly a couple of decades ago [19]. 
Work in this and related directions has been growing since then; 
an exhaustive literature overview would exceed the scope of this 
paper (see e.g. [9] and [21] for good related work lists). We just 
summarize here the most relevant high-level trends for our pre-
sent research, selecting representative literature for each aspect. 

In most if not all of the work developed so far, the items to be 
recommended are modeled as the arms to be pulled. Selecting an 
arm is equivalent to recommending an item, and the reward is the 
user response to the recommendation (e.g. clicks, acceptance, satis-
faction, etc.). An important strand of research in this area has built 
upon a probabilistic matrix factorization (PMF) formulation [15]. In-
stead of directly modeling the reward distribution, these approaches 
model the latent factors of users and/or items into which PMF as-
sumes the reward can be decomposed [9,21,23]. In a similar spirit, 
many other approaches describe the reward structure in terms of 
clusters of users and/or items [5,8,9,21]. Some methods additionally 
rely on the availability of item metadata [5,8], and most formula-
tions introduce a fair number of parameters that require –some-
times involved and costly– model learning or training procedures. 

Our approach is different from prior work, first, in how we 
model recommendation as a MAB problem, and how we develop 
our solution. As we shall describe next, in our bandit model the 
arms are users instead of items. Rather than elaborating on a ma-
trix factorization approach and/or relying on clustering tech-
niques, we develop a very simple neighbor selection scheme. The 
resulting algorithm is easy to reproduce and does not involve 
complex supervised or unsupervised learning steps. On top of an 
alternative and easy formulation, our method has additional ad-
vantages: it introduces zero additional parameters to the underly-
ing bandit algorithm, from which considerable computational 
complexity savings are derived. The approach does not require a 
training phase –except for tuning, if needed, the basic bandit sub-
routine parameters. It does not require any side information ei-
ther, working in a purely collaborative filtering mode. 

3 Nearest-Neighbor Bandits 
While items are the arms to be chosen for direct recommendation 
in prior work, the arms in our formulation are users to be chosen 
as potential neighbors. We consider recommendations are to be 
produced by advice from a neighbor of the target user, where 
neighbor selection is defined as a stochastic choice, rather than by 
deterministic similarity (as in regular kNN), as follows.  

Let 𝒰 and ℐ denote the sets of all users and items, respectively. 
Given a target user 𝑢 ∈ 𝒰  (bandit context), all other users are 
viewed as arms that can be picked as potential neighbors for 𝑢. 
Once a user 𝑣 ∈ 𝒰 ∖ {𝑢}  is selected as a neighbor, she picks an 
item 𝑖 ∈ ℐ, which is then recommended to the target user. Neigh-

bors pick every time the item they like most, as governed by a 
certain distribution 𝑃(𝑖|𝑣). The obtained reward is then binary: it 
is 1 if the target user 𝑢 likes this item too, and 0 if she does not. 
The value of 𝑣 as neighbor of 𝑢 can then be defined as the fraction 
of times the target user would be pleased by an item selected 
(liked) by the neighbor. The reward from a neighbor can be thus 
modeled as a Bernoulli distribution with mean 𝑃(𝑢|𝑣).  

Considering binary rewards, we represent user preference ob-
servations as binary ratings 𝑟: ℛ ⊂ 𝒰 × ℐ → {0,1}, where ℛ is a set 
of observations. Using a Thompson sampling approach [4], in or-
der to produce a recommendation at time 𝑡 we draw an estimate 
𝑝𝑡(𝑢|𝑣) –with lowercase 𝑝– of the unknown Bernoulli parameter 
𝑃(𝑢|𝑣) (the arm value) for each neighbor 𝑣. We draw this estimate 
from a Beta posterior with the following parameters (successes 𝛼𝑡 
and failures 𝛽𝑡) for each neighbor 𝑣 given a target user 𝑢: 

𝛼𝑡(𝑣|𝑢) = 𝛼𝑡(𝑢|𝑣) = ∑ 𝑟(𝑢, 𝑗) 𝑟(𝑣, 𝑗)𝑗∈ℐ   

𝛽𝑡(𝑣|𝑢) = ∑ 𝑟(𝑣, 𝑗)(1 − 𝑟(𝑢, 𝑗))𝑗∈ℐ = 𝑛𝑡(𝑣) − 𝛼𝑡(𝑣|𝑢)  

where 𝑛𝑡(𝑣) = ∑ 𝑟(𝑣, 𝑗)𝑗∈ℐ , and 𝛼𝑡(𝑣|𝑢) is simply the number of 
items 𝑢 and 𝑣 like in common. We then select the neighbor 𝑣𝑡 with 
highest sampled value 𝑝𝑡(𝑢|𝑣𝑡), and then we pick the item 𝑖 that 
𝑣𝑡 likes most –ties broken at random– based on 𝑃𝑡(𝑖|𝑣) ∝ 𝑟(𝑣, 𝑖), 
as the one to be recommended. Every time an item is recom-
mended to some user, all neighbor arms –the 𝛼𝑡(𝑣|𝑢) and 𝛽𝑡(𝑣|𝑢) 
parameters– are updated with the user’s reaction to the item, and 
the cycle goes on. We shall assume, as a most usual scenario for 
our experiments, that items should not be recommended twice. 

A detailed stepwise description of this bandit recommendation 
approach is shown in Algorithm 1. Note that since 𝛼𝑡 is a sym-
metric function, we need only keep and update a single 𝛼𝑡 value 
for each pair of users. Likewise, 𝛽𝑡 can be derived from 𝛼𝑡 and 𝑛𝑡. 

Algorithm 1: Contextual Neighbor-Based Bandit Recommender. 

1: Input: 𝑟: ℛ ⊂ 𝒰 × ℐ → {0,1}  //  Rating dataset 
2:  𝛼0 ∈ ℝ, 𝛽0 ∈ ℝ //  Initial TS parameters 

3: begin 
4:     ℛ0 ← ∅ //  Observed rating set at time 𝑡 = 0 
5:     𝒯0 ← 𝒰 × ℐ //  Recommendable “target” user-item pairs 
6:     for 𝑣 ∈ 𝒰 do 𝑛0(𝑣) ← 𝛼0 + 𝛽0 
7:     for 𝑡 ← 0 to 𝑁 do 
8:         𝑢 ← pick a target user 𝑢 ∈ 𝒰 (e.g. uniformly at random) 
9:         𝑖𝑡 ← recommend (ℛ𝑡, 𝒯𝑡, 𝛼𝑡, 𝑛𝑡, 𝑢) 

10:         𝒯𝑡+1 ← 𝒯𝑡 ∖ {(𝑢, 𝑖𝑡)} //  Do not recommend 𝑖𝑡 to 𝑢 again 
11:         if (𝑢, 𝑖𝑡) ∈ ℛ ∖ ℛ𝑡 then 
12:             ℛ𝑡+1 ← ℛ𝑡 ∪ {(𝑢, 𝑖𝑡)} 
13:               𝑛𝑡+1(𝑢) ← 𝑛𝑡(𝑢) + 𝑟(𝑢, 𝑖𝑡) 
14:             for 𝑣 ∈ 𝒰: (𝑣, 𝑖𝑡) ∈ ℛ𝑡 do 
15:                 𝛼𝑡+1(𝑣|𝑢) ← 𝛼𝑡(𝑣|𝑢) + 𝑟(𝑢, 𝑖𝑡) 𝑟(𝑣, 𝑖𝑡) 
16: end 

17: Function recommend (ℛ𝑡, 𝒯𝑡, 𝛼𝑡, 𝑛𝑡, 𝑢) 
18: begin 
19:     for 𝑣 ∈ 𝒰 ∖ {𝑢} do 
20:         𝑝𝑡(𝑢|𝑣) ← draw from Beta(𝛼𝑡(𝑣|𝑢), 𝑛𝑡(𝑣) − 𝛼𝑡(𝑣|𝑢)) 
21:     𝑣𝑡 ← arg max𝑣∈𝒰∖{𝑢} 𝑝𝑡(𝑢|𝑣) 
22:     return arg max𝑖∈ℐ:(𝑢,𝑖)∈𝒯𝑡,(𝑣𝑡,𝑖)∈ℛ𝑡

𝑟(𝑣𝑡, 𝑖) 
23: end 
 



A Simple Multi-Armed Nearest-Neighbor Bandit for Recommendation RecSys 2019, September, 2019, Copenhagen, Denmark 
 

 

A straightforward generalization of our bandit scheme is pos-
sible, where we use not just one but 𝑘  neighbors. This can be 
achieved by simply selecting the set 𝑁𝑡

𝑘[𝑢] of 𝑘 users that maxim-
ize 𝑝𝑡(𝑢|𝑣) –rather than just one 𝑣𝑡 as in line 20 of Algorithm 1. 
And then, each of these neighbors can have a weighted vote on 
the item to recommend, which would then be selected as 𝑖𝑡 ←

arg max𝑖 ∑ 𝑝𝑡(𝑢|𝑣) 𝑟(𝑣, 𝑖)
𝑣∈𝑁𝑡

𝑘[𝑢]  –instead of just one vote as in line 

22 of Algorithm 1. This represents a multiple play bandit that se-
lects several arms per hand [10], and our basic approach is a par-
ticular case with 𝑘 = 1. In our experiments we have found that 
taking 𝑘 > 1 would appear to be less effective in general, but we 
also found exceptions as we shall describe, and the generalized 
version might be an interesting direction to explore in the future. 

The neighbor bandit algorithm has equivalent computational 
complexity to item-based Thompson sampling: the latter has a cost 
of |ℐ| · 𝑏 per time step, where 𝑏 represents the (considerable) cost of 
sampling from a Beta distribution. The complexity of our neighbor 
bandit scheme (in its plain 𝑘 = 1 version) is ∼ |𝒰| · 𝑏, as the neigh-
bor update operations are negligible in comparison to 𝑏. As to the 
regular kNN scheme, for the optimal settings of 𝑘 the resulting cost 
was similar to that of our approach in our experiments. We have 
also observed that Thompson sampling (and hence our approach) is 
orders of magnitude faster than common matrix factorization ap-
proaches for exploitation-oriented collaborative filtering [6,14]. 

4 Experiments 
We test our approach with offline data to confirm the basic empir-
ical effectiveness of the neighbor bandits scheme, checking that it 
improves over plain kNN, and simple item-oriented bandit meth-
ods. Our evaluation procedure consists in the simulation of a rec-
ommendation loop where the arms are iteratively updated by the 
available feedback on the recommended items. Using an offline rat-
ing dataset, and similarly to e.g. [21], we start the simulation with 
an empty set of observations, and grow it using the dataset to sim-
ulate user feedback. The experimental procedure is described in 
detail by Algorithm 1 (with random user sampling in the main 
loop –line 8). As an evaluation metric we use the incremental ratio 
of discovered positive preferences, which can be seen as a global 
cumulative recall metric (transversal to the set of users), and is 
equivalent to the cumulative returns in bandit terms. The metric 
is informative as a function of time: an algorithm is effective the 
faster it makes recall grow in the recommendation loop.  

4.1 Data 
We test our approach on data with different density, type of feed-
back, and domains: movies, venues, and social networks, the de-
tails for which are given in Table 1. The datasets include: 
• Foursquare check-ins in New York City and Tokyo, made avail-

able by Yang & Zhang [22].  
• Two sets of Twitter data described in [18], built by snowball-

sampling exploration of the interaction network from a seed 
user. The “follow” links between the collected set of users play 
the part of ratings for a contact recommendation task [17]. 

• MovieLens 1M [11], where we binarize the ratings taking as 
positive the values equal or higher to 4. 

4.2 Algorithms 
Along with our neighbor bandit approach, we include the follow-
ing alternatives: 

• Plain exploitation-oriented collaborative filtering algorithms: a 
user-based kNN algorithm with cosine similarity [13], and ma-
trix factorization for implicit data (implicit MF) [6,14].  

• Two basic item-oriented bandit algorithms: -greedy [20] and 
Thompson sampling [4]. We have tested further algorithms 
such as UCB [1], with similar results. 

• As a frame of reference, two non-personalized recommenda-
tions: most popular item, and random recommendation. 
We set the algorithm parameters by grid search. For -greedy, 

we try 𝜀 = 0.1 to 1 by steps of 0.1, plus 𝜀 = 0.05. For Thompson 
sampling we set 𝛼0 = 1 and try powers of 10 for 𝛽0 (1, 10, 100). 
For the number of neighbors 𝑘 of kNN we likewise try powers of 
10 up to 1,000. For matrix factorization [6,14], we take competi-
tive values reported in the literature for this algorithm on each 
dataset: MovieLens 1M [3], Foursquare [16], and Twitter data [17]. 
Table 3 shows all the resulting parameter settings. 

4.3 Results 
Fig. 1 shows the comparison of the tested approaches, in a time 
interval where users have been delivered about 500 item recom-
mendations on average. As an overall observation we can see that 
the neighbor-based bandit is better than all the tested alternatives 
in most cases and perspectives. But our results show further in-
teresting insights that we discuss next. 

4.3.1 Cumulative Gain. Plain collaborative filtering algorithms 
(kNN and implicit MF) have a poor start after which they slightly 
improve gradually. This is a natural consequence of their inability 
to deal with a cold start. After running for long enough (well be-
yond the time intervals we show in the graphs), these myopic al-
gorithms may catch up with the bandit approaches –possibly too 
late to avoid user abandonment in a real application. In the Four-
square datasets, this recovery never even happens because of the 
low data density per item: MF is below non-personalized popular-
ity, and kNN does not even work at all (even for very high values 
of 𝑘 that we tried). It is quite noteworthy that an alternative (ban-
dit) kNN scheme is able not just to function but to outperform all 
the tested approaches in these harsh conditions. 

Popularity is among the best options in the very few initial 
steps (hardly visible in the graphics), after which it stagnates. This 
is to be expected: when barely any information is available, aggre-
gating it is the best one can do.  

The item-based bandits (Thompson sampling and -greedy) 
sometimes start out better than the neighbor bandit at the first few 
steps, but this is reversed very early. It is worth noting that the 
substantial effectiveness improvement by our approach is 
achieved without introducing any additional parameters with re-
spect to the item-arm bandits. The neighbor approach seems to 
better capture structure in the data without incurring in any fur-
ther parameter setting burden or computational cost. 

The dataset where our approach achieves the lesser advantage 
is MovieLens. We can attribute this to two reasons: first, the MF 

Table 1: Dataset details. 

 #Users #Items #Ratings 
Foursquare New York 1,083 38,333 227,428 
Foursquare Tokyo 2,293 61,858 573,703 
Twitter 1 month 9,511 9,511 650,937 
Twitter 200 tweets 9,253 9,253 475,608 
MovieLens 1M 6,040 3,706 1,000,209 
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algorithm might be able to take advantage of the negative ratings 
available in this dataset [6]; this may suggest that our approach is 
better suited for implicit than explicit feedback. Second, Mov-
ieLens is about ten times denser than the other datasets, whereby 
the algorithms might learn ten times faster per time step. We may 
just be observing in the graphic ten times ahead in the future, 
where myopic algorithms are expected to eventually improve.  

We have also tested the multiple play version of our algorithm 
(see section 3), but it yields inferior results in general, whereby we 
omit it in Fig. 1. The only exception is Foursquare New York, 
where we show a multiple play bandit with 𝑘 = 10 that is sub-
stantially better than the basic version.  

4.3.2 Exploration vs. Exploitation. The neighbor bandit seems to 
find a good balance between exploration and exploitation compared 
to the other alternatives. Fig. 2 gives an idea of the degree of explo-
ration of the different methods, by measuring the Gini index of the 
cumulative frequency by which items have been recommended.  

The least explorative approach is, naturally, recommendation 
by popularity (superimposed with a multiple play neighbor bandit 
with 𝑘 = 100), and the most exploratory option is random recom-
mendation. We see that Thompson sampling and -greedy seem 

leant towards exploitation –more exploratory (optimistic) config-
urations are possible but yield inferior results in cumulative recall. 
Note that Gini is useful to reveal exploration but is not the same 
thing as exploration. While exploration causes item diversity, an 
algorithm might try hard to exploit its available knowledge and yet 
end up delivering very different items to each user. This is the case 
of myopic collaborative filtering algorithms, which would seem to 
have a very exploratory start. We can safely attribute this to the 
erratic behavior caused by data scarcity; as more data becomes 
available, their exploitative nature becomes increasingly apparent. 

Interestingly, we have also observed that increasing the num-
ber of plays in our neighbor bandit results in a reduction of explo-
ration. We see in Fig. 2 that the larger the neighborhood size 𝑘, 
the more our algorithm concentrates recommendations over a few 
popular items. Apparently, this restraint on exploration has a pos-
itive effect in the Foursquare New York dataset. 

5 Conclusions 
We have developed a novel multi-armed neighbor-based bandit 
approach that achieves effective collaborative filtering when rec-
ommendation is understood to be an interactive process with a 
feedback loop. In comparison to the common kNN scheme, our 
approach can be described as being sensitive to the uncertainty in 
the available observations of user-user preference similarity, mod-
eling this uncertainty in a well-established stochastic scheme. As 
a result, our approach explores user neighborhoods further than 
the basic kNN algorithm does. Moreover, the selection of a single 
neighbor results in a compact algorithm that appears to be, in our 
experiments, generally better than the use of multiple neighbors. 
Salient properties we may stress in our approach include simplic-
ity and economy in parameters, requirements, design complexity, 
and computational cost. 
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Table 2: Parameter settings of compared algorithms. 

 FourSquare New York FourSquare Tokyo Twitter 1 month Twitter 200 tweets MovieLens 1M 
Bandit kNN 𝛼0 = 1, 𝛽0 = 10  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100 
Th. sampling 𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100  𝛼0 = 1, 𝛽0 = 100 
-greedy 𝜀 = 0.1  𝜀 = 0.2  𝜀 = 0.1  𝜀 = 0.1  𝜀 = 0.05 
Implicit MF 𝑘 = 10, 𝛼 = 10, 𝜆 = 10  𝑘 = 10, 𝛼 = 10, 𝜆 = 10  𝑘 = 270, 𝛼 = 40, 𝜆 = 150  𝑘 = 270, 𝛼 = 40, 𝜆 = 150  𝑘 = 20, 𝛼 = 1, 𝜆 = 0.1 
kNN 𝑘 = 100  𝑘 = 100  𝑘 = 100  𝑘 = 100  𝑘 = 100 
 
 FourSquare New York  FourSquare Tokyo  Twitter 1 month  Twitter 200 tweets  MovieLens 1M 

     

   
Figure 1: Cumulative recall over time for the compared recommendation approaches. 
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Figure 2: Aggregate recommendation diversity on (as an ex-
ample) Twitter 1 month, measured as (one minus) the Gini 
index of the recommendation frequency distribution over 
items. Similar patterns are seen in the other datasets. 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
iv

er
si

ty
 (1

 −
G

in
i)

t Millions

0

0.2

0.4

0.6

0.8

1

012345

D
iv

er
si

ty

t

 k = 1
 k = 10
 k = 100
 User-based kNN
 Thompson sampling
ε-greedy
 Implicit MF
 Most popular
 Random

Neighbor
bandit



A Simple Multi-Armed Nearest-Neighbor Bandit for Recommendation RecSys 2019, September, 2019, Copenhagen, Denmark 
 

 

REFERENCES 
[1] P. Auer, N. Cesa-Bianchi and P. Fischer (2002). Finite-time Analysis of the Mul-

tiarmed Bandit Problem. Machine Learning, 47 (May 2002), 235–256. 
[2] P. Auer, N. Cesa-Bianchi, Y. Freund and R. E. Schapire (2003). The nonstochastic 

multiarmed bandit problem. SIAM journal on computing, 32, 1 (January 2003), 
48–77. 

[3] R. Cañamares and P. Castells (2017). A Probabilistic Reformulation of Memory-
Based Collaborative Filtering – Implications and Popularity Biases. In Proceed-
ings of the 40th Annual International Conference on Research and Development in 
Information Retrieval (SIGIR 2017). ACM, New York, NY, USA, 215–224. 

[4] O. Chapelle and L. Li (2011). An empirical evaluation of Thompson Sampling. 
In Proceedings of Neural Information Processing Systems (NIPS 2011). Curran As-
sociates, Inc., Red Hook, NY, USA, 2249–2257. 

[5] C. Gentile, S. Li and G. Zappella (2014). Online Clustering of Bandits. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML 2014). 
Proceedings of Machine Learning Research, Sheffield, UK, 757–765. 

[6] Y. Hu, Y. Koren and C. Volinsky (2008). Collaborative Filtering for Implicit Feed-
back Datasets. In Proceedings of the 8th IEEE International Conference on Data 
Mining (ICDM 2008). IEEE Computer Society, Washington, DC, USA, 15–19. 

[7] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh and S. Chawla (2015). Efficient 
Thompson Sampling for Online Matrix-Factorization Recommendation. In Pro-
ceedings of Neural Information Processing Systems (NIPS 2015). Curran Associ-
ates, Inc., Red Hook, NY, USA, 1297–1305. 

[8] L. Li, W. Chu, J. Langford and R. Schapire (2010). A contextual-bandit approach 
to personalized news article recommendation. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW 2010). ACM, New York, NY, USA, 
661–670. 

[9] S. Li, A. Karatzoglou and C. Gentile (2016). Collaborative Filtering Bandits. In 
Proceedings of the 39th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2016). ACM New York, NY, USA, 539–
548. 

[10] J. Louëdec, M. Chevalier, J. Mothe, A. Garivier and S Gerchinovitz (2015). A 
Multiple-Play Bandit Algorithm Applied to Recommender Systems. In Proceed-
ings of the 28th International Florida Artificial Intelligence Research Society Con-
ference (FLAIRS 2015).  AAAI Press, Menlo Park, CA, USA, 67–72. 

[11] F. M. Maxwell and J. A. Konstan (2015). The MovieLens Datasets: History and 
Context. ACM Transactions on Interactive Intelligent Systems, 5, 4 (December 
2015).  

[12] J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson and R. 
Mehrotra (2018). Explore, exploit, and explain: personalizing explainable rec-

ommendations with bandits. In Proceedings of the 12th ACM Conference on Rec-
ommender Systems (RecSys 2018). ACM, New York, NY, USA, 31–39. 

[13] X. Ning, C. Desrosiers and G. Karypis (2015). A Comprehensive Survey of 
Neighborhood-Based Recommender Systems. In: F. Ricci, L. Rokach and B. 
Shapira (Eds.), Recommender Systems Handbook (2nd ed.). Springer, New York, 
NY, USA, 37–76. 

[14] I. Pilászy, D. Zibriczky and D. Tikk (2010). Fast ALS-based Matrix Factorization 
for Explicit and Implicit Feedback Datasets. In Proceedings of the 4th ACM Con-
ference on Recommender Systems (RecSys 2010). ACM, New York, NY, USA, 71–
78. 

[15] R. Salakhutdinov and A. Mnih (2007). Probabilistic matrix factorization. In Pro-
ceedings of Neural Information Processing Systems (NIPS 2011). Curran Associ-
ates, Inc., Red Hook, NY, USA, 1257–1264. 

[16] P. Sánchez and A. Bellogín (2018). A novel approach for venue recommendation 
using cross-domain techniques. In Proceedings of the 2nd Workshop on Intelli-
gent Recommender Systems by Knowledge Transfer and Learning (RecSysKTL) 
at the 12th ACM Conference on Recommender Systems (RecSys 2018). ACM, 
New York, NY, USA, 260–268. 

[17] J. Sanz-Cruzado and P. Castells (2018). Contact Recommendations in Social Net-
works. In: I. Cantador, S. Berkovsky, D. Tikk (Eds.), Collaborative Recommenda-
tions: Algorithms, Practical Challenges and Applications. World Scientific Pub-
lishing, Singapore, 2018, 519–569. 

[18] J. Sanz-Cruzado and P. Castells (2018). Enhancing Structural Diversity in Social 
Networks by Recommending Weak Ties. In Proceedings of the 12th ACM Confer-
ence on Recommender Systems (RecSys 2018). ACM, New York, NY, USA, 233–
241. 

[19] G. Shani, D. Heckerman and R. I. Brafman (2005). An MDP-Based Recommender 
System. Journal of Machine Learning Research 6 (December 2005), 1265–1295. 

[20] R. Sutton and A. Barto (2018). Reinforcement Learning: An Introduction (2nd ed.). 
MIT Press, Cambridge, MA, USA, 2018. 

[21] Q. Wang, C. Zeng, W. Zhou, T. Li, S. S. Iyengar, L. Shwartz and G. Grabarnik 
(2019). Online Interactive Collaborative Filtering Using Multi-Armed Bandit 
with Dependent Arms. IEEE Transactions on Knowledge and Data Engineering, 
31, 8 (August 2019), 1569–1580. 

[22] D. Yang, D. Zhang, V. W. Zheng and Z. Yu (2015). Modeling User Activity Pref-
erence by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE 
Transactions on Systems, Man and Cybernetics: Systems, 45, 1 (January 2015), 
129–142. 

[23] X. Zhao, W. Zhang and J. Wang (2013). Interactive Collaborative Filtering. In 
Proceedings of the 22nd ACM International Conference on Information and 
Knowledge Management (CIKM 2013). ACM, New York, NY, USA, 1411–1420. 

 

 


