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ABSTRACT 
Link recommendation is an important and compelling problem at 
the intersection of recommender systems and online social net-
works. Given a user, link recommenders identify people in the 
platform the user might be interested in interacting with. We pre-
sent RELISON, an extensible framework for running link recom-
mendation experiments. The library provides a wide range of al-
gorithms, along with tools for evaluating the produced recom-
mendations. RELISON includes algorithms and metrics that con-
sider the potential effect of recommendations on the properties of 
online social networks. For this reason, the library also imple-
ments network structure analysis metrics, community detection 
algorithms, and network diffusion simulation functionalities. The 
library code and documentation is available at 
https://github.com/ir-uam/RELISON. 
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1 INTRODUCTION 
The importance of online social networks like Facebook, Twitter, 
Instagram, TikTok or LinkedIn has grown beyond expectations 
since their emergence in the late 1990s. [9]. Hundreds of millions 
of people access these platforms every day to share content, 

discover new interests, and establish new relations with people 
around the world. The massive adoption of social network plat-
forms has motivated the study of many different aspects around 
them, such as network structures, the way communities of users 
are formed, the mechanisms behind network evolution, or how 
information travels through the network. The online social net-
work phenomenon has also raised new challenges and opportuni-
ties in fields such as information retrieval and recommender sys-
tems [100]. 

One of the compelling challenges at the confluence of online 
social networks and recommender systems consists of recom-
mending people in the social network with whom a user might be 
interested to connect [45,92]. Link recommendation (also referred 
to as contact recommendation) has many interesting peculiarities 
with respect to the traditional recommendation task. Usually, us-
ers and items are separate sets. However, the candidate users in 
link recommendation are extracted from the same set of people to 
whom the recommendations are delivered: the same entities (peo-
ple) are direct and indirect objects of recommendation here. Also, 
link recommendation algorithms can exploit different aspects of 
the social information around users to improve recommendations.  

Link recommendation can moreover become an important 
driving force in how network takes shape, and a new agent in 
emerging network phenomena. For instance, added edges in the 
network give rise to the formation of new communication chan-
nels, not only for the two people directly involved in the social 
link, but for their local environments and farther. When a contact 
recommendation is accepted, the new link has potential impact on 
the network behavior and evolution [39]. 

Recommender system research and development involves 
techniques and methodologies from different areas, such as ma-
chine learning, information retrieval, statistics, human-computer 
interaction, and psychology. The variety of algorithmic ap-
proaches and evaluation methodologies [13] is a challenge for ex-
perimental design and reproducibility [21]. A good number of 
frameworks have been released to provide reproducible algorithm 
implementations, along with evaluation procedures and metrics 
[3, 28, 37, 51, 61, 71, 88, 99, 101, 105].  

In addition to this methodological variety, further areas con-
verge into link recommendation, namely social network analysis 
and network science. Not surprisingly, many contact recommen-
dation approaches are derived from so-called link prediction in 
network science [65,69], a task that aims to identify links in the 
network that may be created in the future, commonly formulated 
as a classification problem.  

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
SIGIR '22, July 11–15, 2022, Madrid, Spain  
© 2022 Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-8732-3/22/07…$15.00  
DOI: https://doi.org/10.1145/3477495.3531730 

https://doi.org/10.1145/3477495.3531730
mailto:Permissions@acm.org


SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al. 
 

 

 

We aim to integrate both perspectives (link recommendation 
and link prediction) in our framework for their comparison under 
a common configuration. Our framework thus extends currently 
available recommender system frameworks with specific methods 
for recommending people in networks. Conversely, currently 
available software addressing the link prediction problem 
[54,58,67] do not support the specific formulation and methodol-
ogy to apply prediction as a recommendation task. 

The proposed RELISON framework is an extensible Java li-
brary for running and evaluating link recommendations in social 
networks.1 This framework does not only consider the traditional 
accuracy-targeting problem, but also the potential effects of rec-
ommendations over social networks properties and behavior 
[2,19,22,50,79,90,93,98,97]. As part of this purpose, RELISON inte-
grates functionalities to analyze the structure of the network and 
the flow of information that travels through social networks. 

2 RELATED WORK 
Before describing the RELISON framework, we provide a brief 
overview of the link prediction and recommendation tasks, as well 
as a summary of related available software libraries. 

2.1 Link recommendation 
Improving recommendations by exploiting online social network 
structures and traces is the motivation of social recommender sys-
tems [100]. Link recommendation is a particular case where the 
goal is to identify a subset of the people in the network with whom 
the target user might be interested in befriending or interacting 
[45, 92]. 

Recommending social links differs from other traditional rec-
ommendation tasks: in most domains, users and items are differ-
ent objects; whereas in people recommendation, items range in 
the set of system users. This is also true for reciprocal recommen-
dation in such domains as online dating or job recruiting [78]. In 
those domains, recommenders however a) do not need to have an 
underlying social network and b) an accepted connection between 
two users is somehow exclusive to them (for instance, once you 
find a job, it is not likely that you look for another job at least for 
some time). The framework we introduce here is only focused on 
people recommendation in social networks and does not cover 
other people recommendation problems like dating. 

In a way, link recommendation can be seen as a link prediction 
problem [65,69], where existing but unobserved links, or links that 

 
1  The code and documentation for the RELISON library is available  at 
https://github.com/ir-uam/RELISON.  

will be created in the future, are sought to be identified. While 
being very similar tasks, link prediction and recommendation are 
mostly differentiated by how links are ranked and evaluated. 
When we want to recommend people, we generate independent 
rankings for each user in the network, and we evaluate them using 
information retrieval ranking metrics like precision, recall or 
nDCG [5,53]. In contrast, link prediction is commonly addressed 
as a classification problem, where a global ranking of the unob-
served edges is produced, according to how likely they are to ap-
pear in the network according to the estimation. This global rank-
ing is typically evaluated using classification metrics like accu-
racy, or AUC [31]. Because of this close relationship, RELISON 
includes tools for the execution and evaluation of link prediction. 
We summarize the properties of the different tasks we have intro-
duced here in Table 1. 

Many methods have been proposed for link prediction and rec-
ommendation, such as topological information [65,69,91], random 
walks [39,104], user-generated contents [47], machine learning 
classifiers [66] and similarity of node embeddings [42,70]. Also, 
since the beginning of the 2010s, the most important social net-
work platforms have started providing link recommendation ser-
vices, such as ‘Who To Follow’ on Twitter [39,44,94], or 
LinkedIn’s ‘People You May Know’ [50].  

Most work on link recommendation and prediction has tar-
geted the accuracy of the recommendations, i.e. maximizing the 
amount of links added to the network thanks to the recommenda-
tion. However, in the last few years, several works have addressed 
the effect on the network as a whole: recommendation can modify 
the network topology [2,22,50,79,90,98], the information flow 
through it [19,93], or mitigate negative phenomena like the glass 
ceiling effect [97]. In the RELISON framework, we also consider 
these side effects. 

2.2 Related frameworks 
As the RELISON framework appears in the intersection between 
recommender systems and social network analysis, we summarize 
here some of the most related software packages. 

Reproducibility is known to be a non-trivial problem in recom-
mender systems research [21]: the extent of experimental design 
options [13], the configuration alternatives of individual algo-
rithms [77], and the application domain diversity make the com-
parison of recommendation methods a challenging task. Several 
software frameworks have been released to help address these is-
sues, providing algorithm implementations, as well as evaluation 
procedures and metrics. This is the case of libraries such as Beta-
Recsys [71], Cornac [88], DaisyRec [99], DeepRec [108], Elliot [3], 
LensKit [28], LibRec [43], LightFM [61], MyMediaLite [37], Open-
Rec [105], RankSys [101] or Surprise [51]. Differently from our 
framework, these libraries have been developed for the general 
item recommendation case. Although they could also be applied 
for recommending people in social networks, they lack implemen-
tations of specific methods for the task – which we cover in REL-
ISON. 

 
Suggests 

Social net-
work 

Primary task 
type 

RELISON 

Social rec. People or items ✔ Ranking  
People rec. People  Ranking  
Link pred. Network links ✔ Classification ✔ 
Link rec. People ✔ Ranking ✔ 

Table 1. Specific properties of the related tasks. 
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On the other hand, the success and proliferation of online so-
cial network platforms has fueled research and the need for auto-
mated tools, transcending to complex networks in general, in ar-
eas like biology, psychology, physics, or linguistics. This demand 
is reflected in the creation of general-purpose network analysis 
frameworks like Jung2, SNAP [64], iGraph [20], NetworkX [46], 
Graph-tool3 or JGraphT [72]. These libraries offer tools for graph 
creation and manipulation, search in graphs, network visualiza-
tion, structural analysis, community detection, information diffu-
sion, node classification and link prediction.  

Network science being a wide field, available software libraries 
tend to focus on specific problems. This is the case of libraries such 
as CDlib [85] or NDlib [86], focusing on community detection and 
information diffusion simulation, respectively.  

In addition to link recommendation, our framework provides 
some of the functionalities covered by the previous libraries, so it 
does not have to rely on other software packages to understand 
the effects of different approaches on the network: it has tools for 
measuring structural properties of the graph, detecting communi-
ties, and simulating the diffusion of information in the network. 
However, as RELISON focuses on link recommendation, it pro-
vides a smaller collection of network algorithms (for instance, it 
lacks search algorithms in graphs, like A* or node coloring algo-
rithms). Also, it does not provide tools for visualizing networks, 
for which we rely on other toolkits such as Gephi [7]. 

More closely related to our framework, several representative 
link prediction libraries have been released: LPMade [67] provides 
some classical unsupervised and supervised link prediction algo-
rithms, whereas LinkPred [58] includes some classical approaches 
along with more recent methods based on graph embedding algo-
rithms as node2vec [42]. These link prediction libraries support 
the classification view of the problem – they do not supply code 
for running and evaluating predictions in recommendation mode. 
RELISON supports both modes: recommendation and prediction.  

3 RELISON 
RELISON is available under the Mozilla Public License v.2.0.4 The 
library provides tools for generating and evaluating link 

 
2 Jung: http://jung.sourceforge.net  
3 GraphTool: https://graph-tool.skewed.de  

recommendations. It furthermore includes network structure 
analysis functionality, and tools for simulating the diffusion of in-
formation through networks. These functionalities can be used re-
gardless of whether we have applied a recommendation over the 
network or not: although the main goal of this library is to support 
link recommendation, it can also be used as a tool for social net-
work analysis. As shown in Figure 1, RELISON comprises five dif-
ferent modules that we describe in this section. Tables 2, 3, 4 and 
5 compare RELISON to other social network libraries. 

3.1 Core 
The core RELISON module contains the basic functionalities for 
building social graphs, supporting the following network config-
urations: 
• Simple or multigraph: depending on whether we allow a 

single or multiple links between two users. 
• Directed or undirected: in undirected networks, relations 

are always reciprocated whereas in directed networks this is 
not necessarily the case. 

• Weighted or unweighted: in weighted networks, we assign 
different weights (positive or negative) to network edges. Oth-
erwise, edges are just binary (1 if the link exists, 0 otherwise). 

• Edge types: it is also possible to assign an integer label to the 
edges of the network (indicating types of relations, creation 
timestamps, etc.).  

The core module also includes input/output classes for reading 
and writing graphs from / to files, and random network genera-
tion, including random attachment [30], preferential attachment 
[5], and Watts-Strogatz small-world networks [103]. 

3.2 Link recommendation 
The link recommendation module includes the main tools for rec-
ommending people, along with methods for evaluating these rec-
ommendations. This module is built upon the RankSys recom-
mendation framework [101]. As a general recommendation li-
brary, RankSys already provides some common collaborative al-
gorithms and a wide variety of accuracy, novelty and diversity 

4 MPL v.2.0. https://www.mozilla.org/en-US/MPL/2.0 (Accessed 10th June 2021) 

Figure 1. RELISON framework component overview. 
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metrics that can be readily applied to the contact recommendation 
task. This includes collaborative filtering methods like nearest-
neighbors [77] and several implementations of matrix factoriza-
tion [49,80]. Evaluation metrics include common relevance-ori-
ented ranking metrics (precision, recall [5] and nDCG [53]), as 
well as novelty [14,102] and diversity metrics [15,32,102,107]. 

On top of that, this module adds more than fifty link recom-
mendation algorithms, as summarized in Table 3. This includes 
unsupervised methods such as: 
• Methods based on common neighbors: Adamic-Adar [1], 

Jacccard similarity [54], common neighbor count [65] and re-
cent adaptations of information retrieval models for recom-
mending people in social networks [91]. 

• Methods based on the paths between the users in the network: 
Katz [56], local path index [68], shortest distance between the 
target and candidate users [65]. 

• Methods based on random walks: personalized PageRank 
[104],  hitting and commute time [29,34,65], PropFlow [66] 

 
5 https://github.com/yasserg/jforests  

and Money (proposed by Twitter for their ‘Who-to-follow’ 
service) [39,44]. 

• A method based on user-generated content: Twittomender 
[47].  

RELISON also provides supervised methods based on machine 
learning classifiers [66] using the Weka library [35] as a basis, and 
a learning to rank algorithm, LambdaMART [11], using the imple-
mentation provided by Ganjisaffar et al. [36].5 

All the previous approaches can also be used for the link pre-
diction task [65,69], where, as stated before, instead of taking an 
individual ranking for each user, we produce one global ranking, 
sorting the missing links in the network by their probability of 
occurrence. RELISON allows producing such global rankings and 
includes classification metrics to evaluate link prediction: accu-
racy, precision, recall, the F1-score and the area under the ROC 
curve [31]. 

Finally, this module also includes greedy rerankers targeting 
specific structural properties of the network. For this, the frame-
work implements the Global Greedy Reranking algorithm in [93]. 

 
Language 

Structural  
metrics 

Community  
detection 

Random graph 
generators 

Link prediction 
Link  

recommendation 
Information  

diffusion 
RELISON Java ✔ ✔ ✔ ✔ ✔ ✔ 
Jung Java ✔ ✔ ✔    
NetworkX [46] Python ✔ ✔ ✔ ✔   
Graph-tool Python ✔ ✔ ✔   ✔ 
JGraphT [72] Java ✔  ✔ ✔   
iGraph [20] R, Python, C++ ✔ ✔ ✔ ✔   
SNAP [64] C++, Python ✔ ✔ ✔ ✔  ✔ 
Neo4j Java ✔ ✔  ✔   
CDLib [85] Python  ✔     
NDLib [86] Python      ✔ 
LPMade [67] C++    ✔   
LinkPred [58] C++    ✔   

Table 2. Social network framework comparison. 
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RELISON ✔ ✔  ✔ ✔ ✔ ✔ ✔   ✔ ✔ ✔ ✔ ✔  ✔ ✔ ✔ ✔ ✔ ✔   ✔ ✔ ✔  ✔ ✔     55 
NetworkX ✔ ✔     ✔                            8 
JGraphT ✔   ✔ ✔  ✔ ✔                           10 
iGraph                                ✔   3 
Neo4j ✔   ✔    ✔ ✔                        ✔  11 
SNAP                                 ✔  1 
LPMade ✔ ✔  ✔   ✔ ✔     ✔       ✔  ✔ ✔       ✔     13 
LinkPred ✔   ✔ ✔  ✔ ✔ ✔  ✔   ✔                ✔   ✔  21 

Table 3. Link prediction and recommendation methods. 
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Although the rerankers included in the framework can be used for 
any structural property, most of them involve recomputing the 
metric values for the network after adding or removing a link. 
Nonetheless, for some of them, we include specific, optimized re-
rankers that exploit the formulation of the metrics for a faster 
computation. This is the case of the clustering coefficient and the 
Gini-based metrics that consider communities [90,93]. Some de-
tails about how these optimizations have been achieved can be 
seen in [89]. 

3.3 Social network analysis 
The social network analysis module provides tools for understand-
ing the structural properties of the network and automatically de-
tecting clusters of users.  
 
3.2.1 Structural metrics. RELISON provides a selection of common 
network topology analysis metrics. Following the work by New-
man [75], we include the most important and common measures, 
such as the network diameter [52], the clustering coefficient [103] 
and modularity under a community partition [4,18]. In addition, 
we include structural diversity metrics based on the presence of 
weak ties, introduced in our prior work [90,93]. 

The framework classifies these metrics according to the net-
work element they study: node metrics target properties of indi-
vidual users (e.g. closeness, degree centrality [75]), edge/pair met-
rics analyze pairs of users (e.g. distance or embeddedness 
[27,109]), graph metrics consider the complete network structure 
(e.g. global clustering coefficient [103], diameter), and community 
metrics operate on node partitions. The latter metrics are divided 
into two groups: individual community metrics, considering prop-
erties of each community (like their size or their degree), and 
global graph metrics, such as the modularity [4,18] and the com-
munity edge Gini complement [90,93]. We list some of them in 
Table 4. 

 

3.2.2 Community detection. People in online social networks tend 
to group in communities: groups of users tightly connected to 
each other, but with only a few connections to the rest of the net-
work [33]. In our framework, we include several algorithms for 
detecting them: FastGreedy [74], Girvan-Newman [38], Infomap 
[87], label propagation [82], Louvain [8] and spectral clustering 
[106], along with algorithms for finding connected components 
[75]. We compare this set of algorithms with the ones provided by 
other frameworks in Table 5. Frameworks not appearing in the 
table do not support community detection. 

RELISON relies on the modularity metric [4,18] for assessing 
the community partition quality. Other libraries like NetworkX 
[46] or CDlib [85] include a wider variety of metrics and tech-
niques to evaluate community partitions, such as comparing the 
found communities to a ground truth partition. 

3.4 Information diffusion 
The diffusion of information in online social networks [106] is one 
of its foremost functionalities: people are constantly creating and 
sharing content. Online social networks further allow resharing 
and retweeting content published by other users. Understanding 
how information propagates in social networks is therefore a 
compelling (although complex) task.  

The information diffusion module in RELISON provides tools 
for simulating this exchange of information. Other frameworks 
providing information diffusion functionalities, like NDlib [86] or 
Graph-tool, focus on scenarios where a single disease spreads 
through a network [48], or scenarios where opinions about a sin-
gle topic are formed and evolve over time [96]. The simulator we 
provide in our framework takes a different direction: it simulates 
the exchange of multiple user-generated contents at the same 
time, about different topics (as it occurs in real network scenarios). 

The RELISON simulator is highly configurable. Though we in-
clude some preconfigured diffusion protocols, such as the linear 
threshold model [57], the independent cascade model [40], or the 
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RELISON ✔ ✔ ✔ ✔ ✔ ✔ ✔ 18  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 14  ✔ ✔ ✔ ✔ ✔ 11  ✔ ✔   ✔ ✔ 8 
Jung   ✔     2  ✔ ✔ ✔   ✔  ✔ 8  ✔ ✔    2  ✔      2 
NetworkX ✔ ✔ ✔ ✔  ✔ ✔ 11  ✔ ✔   ✔ ✔ ✔ ✔ 12  ✔ ✔   ✔ 7  ✔ ✔ ✔  ✔  8 
Graph-tool ✔ ✔ ✔ ✔    8  ✔ ✔ ✔   ✔ ✔ ✔ 9  ✔ ✔  ✔  4  ✔    ✔  3 
JGraphT  ✔ ✔    ✔ 4  ✔ ✔ ✔ ✔ ✔  ✔ ✔ 10  ✔ ✔ ✔ ✔ ✔ 7        0 
iGraph ✔ ✔ ✔ ✔  ✔ ✔ 10  ✔ ✔ ✔ ✔ ✔ ✔  ✔ 12  ✔ ✔  ✔  5  ✔    ✔  3 
SNAP   ✔     3  ✔ ✔ ✔ ✔ ✔ ✔  ✔ 13  ✔ ✔   ✔ 5  ✔ ✔ ✔  ✔  4 
Neo4j  ✔      1  ✔ ✔ ✔   ✔  ✔ 9   ✔    1        0 

Table 4. Structural metrics for social network analysis. 
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push-pull model [23,24,25], library users can build custom diffu-
sion protocols. Protocols define the way people in the network 
choose information pieces to propagate, which users receive 
and/or read the contents, under which criteria a user propagates 
one of the received contents, etc. 

To analyze the outcome of these simulations, the module in-
cludes several metrics for such aspects as diffusion speed, how 
equally users receive new information, and how novel and diverse 
is the information received by the people in the social network 
[93]. 

3.5 Content 
Finally, the content module works with the different contents gen-
erated by the users. At the moment of writing this paper, it can be 
just used to generate inverted indexes [5,12] to store the infor-
mation about these contents (so they can be used for executing 
content-based recommendation approaches). In the future, this 
might be extended to study search problems in social network en-
vironments. 

3.6 Executable programs 
In addition to the previous modules, the RELISON framework pro-
vides a series of command-line programs that can be executed to 
perform different tasks: 
• Link recommendation: the main program allows executing 

and evaluating recommendations using a) accuracy [5] and b) 
novelty and diversity [14] metrics. Another analyzes the ef-
fects of recommendation on the network structure [90,93]. 
The third program applies reranking algorithms over previ-
ously computed recommendations. A fourth program com-
putes feature vectors for supervised algorithms [66]. 

• Link prediction. Differently from link recommendation, 
there is a single program to run and evaluate link prediction 
algorithms. However, we can also measure the effect of link 
prediction on network structure with the same program we 
provide for contact recommendation. 

• Social network analysis. Two programs are provided: one 
that analyzes the structural properties of networks, and one 

that runs different community detection algorithms on a so-
cial network. 

• Information diffusion. One program runs the simulation 
cycle, and another one carries out a set of measurements on 
the simulation. 

• Other: we provide additional programs for a) generating ran-
dom network graphs and b) creating inverted indexes from 
user-generated contents. 

All these programs can be configured via their input parameters 
and YAML configuration files. In the next section, we illustrate a 
use case, in which we apply some of the previous programs to 
understand the effect of link recommendation on network struc-
ture and information diffusion. 

4 EXAMPLE USE CASE 
We use an example to illustrate how RELISON works, following 
[93]: given a social network, we first generate recommendations 
for a set of users; then we evaluate their effects on the network, 
and finally, we analyze how information propagates through the 
network. 

4.1 Data 
We run our example experiments over a social network graph 
downloaded from Twitter, which has been used in previous work 
[90,91,93]. In order to obtain it, we downloaded from the Twitter 
API all the tweets posted by a set of 10,000 users from June 16th to 
July 16th 2015. Then, we built a directed interaction network, 
where a directed link between two users indicates the source user 
has mentioned the target user, or retweeted one of their tweets, 
as reflected in the set of collected tweets.  

For the experiments in this example, we split the network into 
training and test subsets: all interactions before July 9th 2015 make 
up the training set, and the remaining ones the test set. Any edge 
appearing in both sets is removed from the test set, to avoid test 
data leakage. The frequency of interactions between each pair of 
users before the split time is used as the weight of the correspond-
ing edge. We summarize in Table 6 the properties of this dataset, 
which is available in the GitHub repository, along with the code. 
The file names we shall use throughout the use case correspond 
to the names of the files in the repository. 

4.2 Running link recommendations 
Recommendation algorithms are run in the recommendation pro-
gram provided in the framework. The program receives: a) the 

 

C
on

ne
ct

ed
 c

om
p.

 [
75

] 

Fa
st

 G
re

ed
y.

 [
10

3]
 

In
fo

m
ap

 [
87

] 

La
be

l p
ro

pa
ga

ti
on

 [
82

] 

Lo
uv

ai
n 

[9
0]

 

Sp
in

gl
as

s 
[8

3]
 

W
al

kt
ra

p 
[8

1]
 

N
u

m
. t

ot
al

 

RELISON ✔ ✔ ✔ ✔ ✔   8 
Jung ✔       4 
NetworkX   ✔     3 
iGraph ✔ ✔ ✔ ✔ ✔ ✔ ✔ 12 
SNAP     ✔   5 
Neo4j ✔   ✔ ✔   7 
CDLib   ✔ ✔ ✔ ✔ ✔ 40 

Table 5. Community detection algorithms. 

 

Multigraph ✘ 
Directed ✔ 
Weighted ✔ 
# Users        9,528 
# Training edges    170,425 
# Test edges      54,335 
# Tweets (total) 1,558,518 
# Tweets (test)    622,795 

Table 6. Details of the Twitter dataset. 
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training and test networks (along with their configuration param-
eters), b) a YAML configuration file containing the information 
about link recommendations and metrics, c) the output directory, 
and d) a few additional recommendation parameters. The latter 
include the cutoff for the recommendation, whether recommen-
dations should be produced for all users or just the ones involved 
in the test subset, and whether reciprocating link recommenda-
tion is allowed.  

We run four link recommendation algorithms in this example: 
BM25 [84,91], implicit matrix factorization [49], popularity-based 
and random recommendation, with the hyperparameter configu-
ration reported in [91]. We take a cutoff of 10 recommended links 
per user and, to avoid trivializing the problem, we do not consider 
recommending reciprocal edges. We use nDCG@10 and MAP@10 
as evaluation metrics.  

The command line for running the program is as follows: 

 
where multigraph, readtypes and selfloops take the false 
value, directed and weighted take true, and cutoff is 10.  

We show part of the configuration file in Figure 2. We show in 
red the identifiers of the algorithms, and in blue the name of the 
algorithm parameters. We can see in the figure the configuration 
of the implicit matrix factorization algorithm [49]: the number of 
latent factors is 𝑘 = 300, the regularization parameter is 𝜆 = 150, 
the rating confidence parameter is 𝛼 = 40, and the algorithm does 
not consider edge weights. The configuration for the rest of algo-
rithms is available in the full file, which can be accessed through 
the link provided in the figure. Table 7 shows the outcome of this 
program. Confirming results reported in previous publications 
[91], iMF is the best algorithm under this setting, followed by 
BM25. As expected, popularity and random recommendation 
achieve much lower accuracy. 

4.3 Effects on network structure 
Once recommendations are computed and the effectiveness of the 
algorithms has been measured, we analyze the effect of recom-
mendations on network structure. We use for this purpose two of 
the programs included in the framework. 

We first check the original structural properties of the network 
using the sna program, which takes as input the network, a YAML 
configuration file containing the metrics to use, and a directory in 
which to store the outcome. The command line for this program 
is: 

 
where --distances is an optional flag for precomputing the dis-
tances between users. 

We then run the program named effects, that adds a set of 
recommended links back to the network from which the recom-
mendations are produced (as in [90,93]). The structural metrics of 
interest are then computed over this extended network. The pro-
gram takes as input the training and test networks (along with 

their configuration), a directory containing the recommendations, 
the YAML configuration file, a file for storing the output, the rec-
ommendation cutoff, a parameter indicating whether we wish to 
compute edge / pair metrics over all the network or just the rec-
ommended pairs, and a parameter indicating whether all recom-
mended edges should be added or only the relevant ones (those 
appearing in the test set). The command line for this program is 
the following: 

 
We now measure three properties of the network: the global 

clustering coefficient, the eccentricity of nodes, and the embed-
dedness of edges. As both sna and effects programs measure the 
same properties (over different networks), they share the same 
YAML configuration file. We show the YAML file for this experi-
ment in Figure 3, with red for the metric names, and purple for 
their input parameters. 

In our test, we measure the embeddedness of all the edges in 
the network (i.e. we set use-all-edges to true) and, following 
previous work [90,93], we add all the recommended links to the 
original network (i.e. we set only-rel to false). Results for exe-
cuting these two programs are shown in Table 8. We see that dif-
ferent algorithms have diverse effects on the network. For in-
stance, random recommendation reduces the value of all metrics 

java -jar RELISON.jar recommendation train.txt test.txt 

multigraph directed weighted selfloops readtypes algo-

rithms-example.yaml output/ cutoff 

java -jar RELISON.jar sna train.txt multigraph directed 

weighted selfloops metrics-example.yaml output/ --distances 

 
 

java -jar RELISON.jar effects train.txt test.txt multigraph 

directed weighted selfloops rec-folder/ metrics-exam-

ple.yaml output.txt cutoff use-all-edges only-rel  

--distances 

 
 

Figure 2. YAML configuration file for link 
recommendation. 

algorithms: 
  iMF: 
    k: 
      type: int 
      values: 300 
    lambda: 
      type: double 
      values: 150.0 
    alpha: 
      type: double 
      values: 40.0 
    weighted: 
      type: boolean 
      values: false 
  BM25: 
    <...> 
metrics: 
  nDCG: 
    cutoff: 
      type: int 
      values: 10 
  MAP: 
    <...> 

Link: https://github.com/ir-uam/RELISON/blob/master/Example 
configuration files/algorithms-example.yml  

 
 nDCG@10 MAP@10 

BM25 0.10416 0.04399 
iMF 0.13865 0.06618 
Popularity 0.05723 0.02908 
Random 0.00107 0.00030 

Table 7. Recommendation example results. 

 

https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/algorithms-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/algorithms-example.yml
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with respect to the training network, while iMF has the opposite 
effect. 

4.4 Effects on information diffusion 
To conclude our example, we study the effect of recommendation 
on information diffusion.  

For this purpose, the diffusion program simulates the infor-
mation flow through the network. The program receives as input 
a YAML configuration file, the result output folder, the number of 
times we run each simulation, the network data, files containing 
the identifiers of users and content items (here, tweets) to be 
shared, and a file providing the authorship relationship between 
users and items. Optionally, we can read a file with recommended 
links to be added to the network, and additional information like 
user and item features. In this example, we use tweets as content 
items and hashtags as tweet features. The command line for run-
ning the program is the following:  

 
We now simulate the diffusion of information over the training 

graph introduced in Section 4.1 and the extended versions of this 
graph after adding the links recommended by the algorithms in 
section 4.2. The information to be propagated are the tweets cre-
ated by users in the network after the time of the split. 

Figure 4 shows the YAML configuration file. For each simula-
tion, we must provide the program with three elements. First, a 
diffusion protocol: in the example, we use one of the pre-config-
ured protocols, the independent cascade model [40], in which 

users propagate a piece of information received from another user 
with a fixed probability (here, 𝑝 = 0.001). In addition, each user 
propagates one of her own created content items. Second, a stop 
condition, that indicates when the simulation must finish. Here, 
we stop it after 1,000 iterations. And third, a set of filters, which 
clean all the received information before the simulation starts. 
Here, we apply two different filters: the first one removes all the 
information items without a creator in the training graph; the sec-
ond removes the tweets without any hashtag. 

Once the diffusion simulations have been run and their trace 
is stored, we run the second program, diffusion-eval, for ana-
lyzing the properties of the information flow across the network. 
This second program receives all data that was provided to the 
diffusion program (the network, the user-generated contents, 
etc.) and, in addition, a folder containing the trace produced by 
the simulations to be analyzed, and an output directory in which 
to store the metric results. The command line for this program is 
then:  

 
The YAML configuration file for this program is illustrated in 

Figure 5. In this case, it has two parts: a list of data filters (the same 
as in the configuration file for the diffusion program), and the 
diffusion properties we want to measure. In this example, we are 
measuring two properties: the diffusion speed (how many infor-
mation items have been received by all the users in the network 
over time), and a diversity metric, measuring how balanced the 
distribution of the received hashtags in the network is (using the 
complement of the Gini index [26]).  

We plot the outcome of this program for our example in Figure 
6, where the x axis shows the number of iterations in the simula-
tion, and the y axis shows the value of each diffusion metric at the 

java -jar RELISON.jar diffusion diffusion-example.yaml out-

put/ numReps train.txt multigraph directed weighted 

selfloops readtypes user-index.txt info-index.txt 

tweets.txt -infofeats tweet-hashtag.txt (-rec rec-file.txt) 

java -jar RELISON.jar diffusion-eval diffusion-metrics-ex-

ample.yaml train.txt multigraph directed weighted selfloops 

readtypes user-index.txt info-index.txt tweets.txt diffu-

sion/ output/ -infofeats tweet-hashtag.txt 

Figure 3. YAML configuration file for measuring structural 
properties of the network. 

metrics: 
  Clustering coefficient: 
    type: graph 
    params: 
      uSel: 
        type: orientation 
        values: IN 
      vSel: 
        type: orientation 
        values: OUT 
  Eccentricity: 
    type: vertex 
  Embeddedness: 
    type: edge 
    <...> 

Link: https://github.com/ir-uam/RELISON/blob/master/Example 
configuration files/metrics-example.yml  

 
 Clustering 

coefficient 
Average node 
eccentricity 

Average edge 
embeddedness 

BM25 0.12224 6.19689 0.02799 
iMF 0.09851 6.69626 0.02571 
Popularity 0.07575 6.00084 0.01542 
Random 0.04839 4.25210 0.01479 
Original network 0.05621 6.67338 0.02431 

Table 8. Structural metrics example results. 

 

Figure 4. YAML configuration file for the diffusion simula-
tion. 

simulations: 
- filters: 
    Creator: 
    Information feature: 
      feature: 
        type: string 
        value: hashtag 
  protocol: 
    name: Independent cascade model 
    type: PRECONFIGURED 
    params: 
      numOwn: 
        type: int 
        value: 1 
      prob: 
        type: double 
        value: 0.001 
  stop: 
    name: Num. iter 
    params: 
      numIter: 
        type: int 
        value: 1000 
 

Link: https://github.com/ir-uam/RELISON/blob/master/Example 
configuration files/diffusion-example.yml 

https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/metrics-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/metrics-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-example.yml


RELISON SIGIR’22, July, 2022, Madrid, Spain 
 

 

given point of the simulation. As can be observed, adding the links 
of all recommendations increases the speed of diffusion but, in 
general, decreases the diversity of the information that users re-
ceive – the only exception is the random recommender, which 
also increases the diversity of the information received by the us-
ers. 

5 CONCLUSION 
We have introduced RELISON, an extensible Java framework for 
experimentation in link recommendation. The framework pro-
vides a large collection of state-of-the-art contact recommenda-
tion algorithms, along with ranking-based metrics for evaluating 
them, including accuracy, novelty and diversity metrics [13,14]. 
The library allows measuring structural properties of networks – 
by the implementation of more than fifty network analysis met-
rics –, finding communities and analyzing how the information 
travels through social networks.  

To the best of our knowledge, RELISON represents the first 
framework addressing link prediction a proper recommendation 
task, and also the first to consider the effects that the recommen-
dations have on the network. 

The framework can be extended in the future to include more 
link recommendation and prediction algorithms, like those based 
on graph embeddings [42,70]. We plan to add further functionality 
for more general social recommendation [100], where we might 
consider the traces and structures of online social networks to 
support the recommendation of items like the contents generated 
by the users in the network (tweets, posts).  
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