
RELISON: A Framework for Link Recommendation
in Social Networks

Javier Sanz-Cruzado
University of Glasgow

javier.sanz-cruzadopuig@glasgow.ac.uk

Pablo Castells
Universidad Autónoma de Madrid

pablo.castells@uam.es

ABSTRACT
Link recommendation is an important and compelling problem at
the intersection of recommender systems and online social net-
works. Given a user, link recommenders identify people in the
platform the user might be interested in interacting with. We pre-
sent RELISON, an extensible framework for running link recom-
mendation experiments. The library provides a wide range of al-
gorithms, along with tools for evaluating the produced recom-
mendations. RELISON includes algorithms and metrics that con-
sider the potential effect of recommendations on the properties of
online social networks. For this reason, the library also imple-
ments network structure analysis metrics, community detection
algorithms, and network diffusion simulation functionalities. The
library code and documentation is available at
https://github.com/ir-uam/RELISON.

CCS CONCEPTS
• Information systems → Information retrieval → Retrieval tasks
and goals → Recommender systems • World Wide Web → Web
applications → Social networks

KEYWORDS
Link recommendation, social network analysis, reproducibility,
link prediction.

ACM Reference format:

Javier Sanz-Cruzado and Pablo Castells. 2021. RELISON: A Framework for
Link Recommendation in Social Networks. In Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR’22). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3477495.3531730

1 INTRODUCTION
The importance of online social networks like Facebook, Twitter,
Instagram, TikTok or LinkedIn has grown beyond expectations
since their emergence in the late 1990s. [9]. Hundreds of millions
of people access these platforms every day to share content,

discover new interests, and establish new relations with people
around the world. The massive adoption of social network plat-
forms has motivated the study of many different aspects around
them, such as network structures, the way communities of users
are formed, the mechanisms behind network evolution, or how
information travels through the network. The online social net-
work phenomenon has also raised new challenges and opportuni-
ties in fields such as information retrieval and recommender sys-
tems [100].

One of the compelling challenges at the confluence of online
social networks and recommender systems consists of recom-
mending people in the social network with whom a user might be
interested to connect [45,92]. Link recommendation (also referred
to as contact recommendation) has many interesting peculiarities
with respect to the traditional recommendation task. Usually, us-
ers and items are separate sets. However, the candidate users in
link recommendation are extracted from the same set of people to
whom the recommendations are delivered: the same entities (peo-
ple) are direct and indirect objects of recommendation here. Also,
link recommendation algorithms can exploit different aspects of
the social information around users to improve recommendations.

Link recommendation can moreover become an important
driving force in how network takes shape, and a new agent in
emerging network phenomena. For instance, added edges in the
network give rise to the formation of new communication chan-
nels, not only for the two people directly involved in the social
link, but for their local environments and farther. When a contact
recommendation is accepted, the new link has potential impact on
the network behavior and evolution [39].

Recommender system research and development involves
techniques and methodologies from different areas, such as ma-
chine learning, information retrieval, statistics, human-computer
interaction, and psychology. The variety of algorithmic ap-
proaches and evaluation methodologies [13] is a challenge for ex-
perimental design and reproducibility [21]. A good number of
frameworks have been released to provide reproducible algorithm
implementations, along with evaluation procedures and metrics
[3, 28, 37, 51, 61, 71, 88, 99, 101, 105].

In addition to this methodological variety, further areas con-
verge into link recommendation, namely social network analysis
and network science. Not surprisingly, many contact recommen-
dation approaches are derived from so-called link prediction in
network science [65,69], a task that aims to identify links in the
network that may be created in the future, commonly formulated
as a classification problem.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR '22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07…$15.00
DOI: https://doi.org/10.1145/3477495.3531730

https://doi.org/10.1145/3477495.3531730
mailto:Permissions@acm.org

SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al.

We aim to integrate both perspectives (link recommendation
and link prediction) in our framework for their comparison under
a common configuration. Our framework thus extends currently
available recommender system frameworks with specific methods
for recommending people in networks. Conversely, currently
available software addressing the link prediction problem
[54,58,67] do not support the specific formulation and methodol-
ogy to apply prediction as a recommendation task.

The proposed RELISON framework is an extensible Java li-
brary for running and evaluating link recommendations in social
networks.1 This framework does not only consider the traditional
accuracy-targeting problem, but also the potential effects of rec-
ommendations over social networks properties and behavior
[2,19,22,50,79,90,93,98,97]. As part of this purpose, RELISON inte-
grates functionalities to analyze the structure of the network and
the flow of information that travels through social networks.

2 RELATED WORK
Before describing the RELISON framework, we provide a brief
overview of the link prediction and recommendation tasks, as well
as a summary of related available software libraries.

2.1 Link recommendation
Improving recommendations by exploiting online social network
structures and traces is the motivation of social recommender sys-
tems [100]. Link recommendation is a particular case where the
goal is to identify a subset of the people in the network with whom
the target user might be interested in befriending or interacting
[45, 92].

Recommending social links differs from other traditional rec-
ommendation tasks: in most domains, users and items are differ-
ent objects; whereas in people recommendation, items range in
the set of system users. This is also true for reciprocal recommen-
dation in such domains as online dating or job recruiting [78]. In
those domains, recommenders however a) do not need to have an
underlying social network and b) an accepted connection between
two users is somehow exclusive to them (for instance, once you
find a job, it is not likely that you look for another job at least for
some time). The framework we introduce here is only focused on
people recommendation in social networks and does not cover
other people recommendation problems like dating.

In a way, link recommendation can be seen as a link prediction
problem [65,69], where existing but unobserved links, or links that

1 The code and documentation for the RELISON library is available at
https://github.com/ir-uam/RELISON.

will be created in the future, are sought to be identified. While
being very similar tasks, link prediction and recommendation are
mostly differentiated by how links are ranked and evaluated.
When we want to recommend people, we generate independent
rankings for each user in the network, and we evaluate them using
information retrieval ranking metrics like precision, recall or
nDCG [5,53]. In contrast, link prediction is commonly addressed
as a classification problem, where a global ranking of the unob-
served edges is produced, according to how likely they are to ap-
pear in the network according to the estimation. This global rank-
ing is typically evaluated using classification metrics like accu-
racy, or AUC [31]. Because of this close relationship, RELISON
includes tools for the execution and evaluation of link prediction.
We summarize the properties of the different tasks we have intro-
duced here in Table 1.

Many methods have been proposed for link prediction and rec-
ommendation, such as topological information [65,69,91], random
walks [39,104], user-generated contents [47], machine learning
classifiers [66] and similarity of node embeddings [42,70]. Also,
since the beginning of the 2010s, the most important social net-
work platforms have started providing link recommendation ser-
vices, such as ‘Who To Follow’ on Twitter [39,44,94], or
LinkedIn’s ‘People You May Know’ [50].

Most work on link recommendation and prediction has tar-
geted the accuracy of the recommendations, i.e. maximizing the
amount of links added to the network thanks to the recommenda-
tion. However, in the last few years, several works have addressed
the effect on the network as a whole: recommendation can modify
the network topology [2,22,50,79,90,98], the information flow
through it [19,93], or mitigate negative phenomena like the glass
ceiling effect [97]. In the RELISON framework, we also consider
these side effects.

2.2 Related frameworks
As the RELISON framework appears in the intersection between
recommender systems and social network analysis, we summarize
here some of the most related software packages.

Reproducibility is known to be a non-trivial problem in recom-
mender systems research [21]: the extent of experimental design
options [13], the configuration alternatives of individual algo-
rithms [77], and the application domain diversity make the com-
parison of recommendation methods a challenging task. Several
software frameworks have been released to help address these is-
sues, providing algorithm implementations, as well as evaluation
procedures and metrics. This is the case of libraries such as Beta-
Recsys [71], Cornac [88], DaisyRec [99], DeepRec [108], Elliot [3],
LensKit [28], LibRec [43], LightFM [61], MyMediaLite [37], Open-
Rec [105], RankSys [101] or Surprise [51]. Differently from our
framework, these libraries have been developed for the general
item recommendation case. Although they could also be applied
for recommending people in social networks, they lack implemen-
tations of specific methods for the task – which we cover in REL-
ISON.

Suggests

Social net-
work

Primary task
type

RELISON

Social rec. People or items ✔ Ranking
People rec. People Ranking
Link pred. Network links ✔ Classification ✔
Link rec. People ✔ Ranking ✔

Table 1. Specific properties of the related tasks.

https://github.com/ir-uam/RELISON

RELISON SIGIR’22, July, 2022, Madrid, Spain

On the other hand, the success and proliferation of online so-
cial network platforms has fueled research and the need for auto-
mated tools, transcending to complex networks in general, in ar-
eas like biology, psychology, physics, or linguistics. This demand
is reflected in the creation of general-purpose network analysis
frameworks like Jung2, SNAP [64], iGraph [20], NetworkX [46],
Graph-tool3 or JGraphT [72]. These libraries offer tools for graph
creation and manipulation, search in graphs, network visualiza-
tion, structural analysis, community detection, information diffu-
sion, node classification and link prediction.

Network science being a wide field, available software libraries
tend to focus on specific problems. This is the case of libraries such
as CDlib [85] or NDlib [86], focusing on community detection and
information diffusion simulation, respectively.

In addition to link recommendation, our framework provides
some of the functionalities covered by the previous libraries, so it
does not have to rely on other software packages to understand
the effects of different approaches on the network: it has tools for
measuring structural properties of the graph, detecting communi-
ties, and simulating the diffusion of information in the network.
However, as RELISON focuses on link recommendation, it pro-
vides a smaller collection of network algorithms (for instance, it
lacks search algorithms in graphs, like A* or node coloring algo-
rithms). Also, it does not provide tools for visualizing networks,
for which we rely on other toolkits such as Gephi [7].

More closely related to our framework, several representative
link prediction libraries have been released: LPMade [67] provides
some classical unsupervised and supervised link prediction algo-
rithms, whereas LinkPred [58] includes some classical approaches
along with more recent methods based on graph embedding algo-
rithms as node2vec [42]. These link prediction libraries support
the classification view of the problem – they do not supply code
for running and evaluating predictions in recommendation mode.
RELISON supports both modes: recommendation and prediction.

3 RELISON
RELISON is available under the Mozilla Public License v.2.0.4 The
library provides tools for generating and evaluating link

2 Jung: http://jung.sourceforge.net
3 GraphTool: https://graph-tool.skewed.de

recommendations. It furthermore includes network structure
analysis functionality, and tools for simulating the diffusion of in-
formation through networks. These functionalities can be used re-
gardless of whether we have applied a recommendation over the
network or not: although the main goal of this library is to support
link recommendation, it can also be used as a tool for social net-
work analysis. As shown in Figure 1, RELISON comprises five dif-
ferent modules that we describe in this section. Tables 2, 3, 4 and
5 compare RELISON to other social network libraries.

3.1 Core
The core RELISON module contains the basic functionalities for
building social graphs, supporting the following network config-
urations:
• Simple or multigraph: depending on whether we allow a

single or multiple links between two users.
• Directed or undirected: in undirected networks, relations

are always reciprocated whereas in directed networks this is
not necessarily the case.

• Weighted or unweighted: in weighted networks, we assign
different weights (positive or negative) to network edges. Oth-
erwise, edges are just binary (1 if the link exists, 0 otherwise).

• Edge types: it is also possible to assign an integer label to the
edges of the network (indicating types of relations, creation
timestamps, etc.).

The core module also includes input/output classes for reading
and writing graphs from / to files, and random network genera-
tion, including random attachment [30], preferential attachment
[5], and Watts-Strogatz small-world networks [103].

3.2 Link recommendation
The link recommendation module includes the main tools for rec-
ommending people, along with methods for evaluating these rec-
ommendations. This module is built upon the RankSys recom-
mendation framework [101]. As a general recommendation li-
brary, RankSys already provides some common collaborative al-
gorithms and a wide variety of accuracy, novelty and diversity

4 MPL v.2.0. https://www.mozilla.org/en-US/MPL/2.0 (Accessed 10th June 2021)

Figure 1. RELISON framework component overview.

http://jung.sourceforge.net/
https://graph-tool.skewed.de/
https://www.mozilla.org/en-US/MPL/2.0/

SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al.

metrics that can be readily applied to the contact recommendation
task. This includes collaborative filtering methods like nearest-
neighbors [77] and several implementations of matrix factoriza-
tion [49,80]. Evaluation metrics include common relevance-ori-
ented ranking metrics (precision, recall [5] and nDCG [53]), as
well as novelty [14,102] and diversity metrics [15,32,102,107].

On top of that, this module adds more than fifty link recom-
mendation algorithms, as summarized in Table 3. This includes
unsupervised methods such as:
• Methods based on common neighbors: Adamic-Adar [1],

Jacccard similarity [54], common neighbor count [65] and re-
cent adaptations of information retrieval models for recom-
mending people in social networks [91].

• Methods based on the paths between the users in the network:
Katz [56], local path index [68], shortest distance between the
target and candidate users [65].

• Methods based on random walks: personalized PageRank
[104], hitting and commute time [29,34,65], PropFlow [66]

5 https://github.com/yasserg/jforests

and Money (proposed by Twitter for their ‘Who-to-follow’
service) [39,44].

• A method based on user-generated content: Twittomender
[47].

RELISON also provides supervised methods based on machine
learning classifiers [66] using the Weka library [35] as a basis, and
a learning to rank algorithm, LambdaMART [11], using the imple-
mentation provided by Ganjisaffar et al. [36].5

All the previous approaches can also be used for the link pre-
diction task [65,69], where, as stated before, instead of taking an
individual ranking for each user, we produce one global ranking,
sorting the missing links in the network by their probability of
occurrence. RELISON allows producing such global rankings and
includes classification metrics to evaluate link prediction: accu-
racy, precision, recall, the F1-score and the area under the ROC
curve [31].

Finally, this module also includes greedy rerankers targeting
specific structural properties of the network. For this, the frame-
work implements the Global Greedy Reranking algorithm in [93].

Language

Structural
metrics

Community
detection

Random graph
generators

Link prediction
Link

recommendation
Information

diffusion
RELISON Java ✔ ✔ ✔ ✔ ✔ ✔
Jung Java ✔ ✔ ✔
NetworkX [46] Python ✔ ✔ ✔ ✔
Graph-tool Python ✔ ✔ ✔ ✔
JGraphT [72] Java ✔ ✔ ✔
iGraph [20] R, Python, C++ ✔ ✔ ✔ ✔
SNAP [64] C++, Python ✔ ✔ ✔ ✔ ✔
Neo4j Java ✔ ✔ ✔
CDLib [85] Python ✔
NDLib [86] Python ✔
LPMade [67] C++ ✔
LinkPred [58] C++ ✔

Table 2. Social network framework comparison.

 Neighbor-based Path-based Random walks Collaborative
filtering

Super-
vised

 Other

Po
pu

la
ri

ty

R
an

do
m

 A
da

m
ic

-A
da

r
[1

, 6
5]

C
os

in
e

[6
9]

IR
 m

od
el

s
[9

1]

Ja
cc

ar
d

[5
4]

M
C

N
 [

65
]

T
ot

al
 n

ei
gh

bo
rs

 Sh
or

te
st

 d
is

ta
nc

e
[6

5]

G
lo

ba
l L

H
N

 in
de

x
[6

2]

K
at

z
[5

6,
65

]

Lo
ca

l p
at

h
in

de
x

[6
8]

M
at

ri
x

fo
re

st
 [

16
,6

9]

 C
om

m
ut

e
ti

m
e

[2
9,

34
,6

5]

H
it

ti
ng

 ti
m

e
[2

9,
34

,6
5]

Pe
rs

. H
IT

S
 3

9,
44

, 5
9]

Pe
rs

. P
ag

eR
an

k
[1

04
]

Pe
rs

. S
A

LS
A

 [
39

,4
4,

 6
3]

Pr
op

Fl
ow

 [
66

]

Si
m

R
an

k
[5

5]

 U
se

r-
ba

se
d

kN
N

 [
77

]

It
em

-b
as

ed
 k

N
N

 [
77

]

Im
pl

ic
it

 M
F

[4
9]

La
m

bd
aM

A
R

T
 [

11
,3

6,
91

]

M
L

C
la

ss
ifi

er
s

[6
6]

 H
R

B
 [

17
]

G
ra

ph
 e

m
bb

ed
di

ng
s

[4
2]

 N
u

m
. t

ot
al

RELISON ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 55
NetworkX ✔ ✔ ✔ 8
JGraphT ✔ ✔ ✔ ✔ ✔ 10
iGraph ✔ 3
Neo4j ✔ ✔ ✔ ✔ ✔ 11
SNAP ✔ 1
LPMade ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 13
LinkPred ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 21

Table 3. Link prediction and recommendation methods.

https://github.com/yasserg/jforests

RELISON SIGIR’22, July, 2022, Madrid, Spain

Although the rerankers included in the framework can be used for
any structural property, most of them involve recomputing the
metric values for the network after adding or removing a link.
Nonetheless, for some of them, we include specific, optimized re-
rankers that exploit the formulation of the metrics for a faster
computation. This is the case of the clustering coefficient and the
Gini-based metrics that consider communities [90,93]. Some de-
tails about how these optimizations have been achieved can be
seen in [89].

3.3 Social network analysis
The social network analysis module provides tools for understand-
ing the structural properties of the network and automatically de-
tecting clusters of users.

3.2.1 Structural metrics. RELISON provides a selection of common
network topology analysis metrics. Following the work by New-
man [75], we include the most important and common measures,
such as the network diameter [52], the clustering coefficient [103]
and modularity under a community partition [4,18]. In addition,
we include structural diversity metrics based on the presence of
weak ties, introduced in our prior work [90,93].

The framework classifies these metrics according to the net-
work element they study: node metrics target properties of indi-
vidual users (e.g. closeness, degree centrality [75]), edge/pair met-
rics analyze pairs of users (e.g. distance or embeddedness
[27,109]), graph metrics consider the complete network structure
(e.g. global clustering coefficient [103], diameter), and community
metrics operate on node partitions. The latter metrics are divided
into two groups: individual community metrics, considering prop-
erties of each community (like their size or their degree), and
global graph metrics, such as the modularity [4,18] and the com-
munity edge Gini complement [90,93]. We list some of them in
Table 4.

3.2.2 Community detection. People in online social networks tend
to group in communities: groups of users tightly connected to
each other, but with only a few connections to the rest of the net-
work [33]. In our framework, we include several algorithms for
detecting them: FastGreedy [74], Girvan-Newman [38], Infomap
[87], label propagation [82], Louvain [8] and spectral clustering
[106], along with algorithms for finding connected components
[75]. We compare this set of algorithms with the ones provided by
other frameworks in Table 5. Frameworks not appearing in the
table do not support community detection.

RELISON relies on the modularity metric [4,18] for assessing
the community partition quality. Other libraries like NetworkX
[46] or CDlib [85] include a wider variety of metrics and tech-
niques to evaluate community partitions, such as comparing the
found communities to a ground truth partition.

3.4 Information diffusion
The diffusion of information in online social networks [106] is one
of its foremost functionalities: people are constantly creating and
sharing content. Online social networks further allow resharing
and retweeting content published by other users. Understanding
how information propagates in social networks is therefore a
compelling (although complex) task.

The information diffusion module in RELISON provides tools
for simulating this exchange of information. Other frameworks
providing information diffusion functionalities, like NDlib [86] or
Graph-tool, focus on scenarios where a single disease spreads
through a network [48], or scenarios where opinions about a sin-
gle topic are formed and evolve over time [96]. The simulator we
provide in our framework takes a different direction: it simulates
the exchange of multiple user-generated contents at the same
time, about different topics (as it occurs in real network scenarios).

The RELISON simulator is highly configurable. Though we in-
clude some preconfigured diffusion protocols, such as the linear
threshold model [57], the independent cascade model [40], or the

 Graph metrics Vertex metrics Edge / pair metrics Community metrics

A
SL

 [
75

]

C
lu

st
er

in
g.

 c
oe

f.
[1

03
]

D
ia

m
et

er
 [

52
]

D
eg

re
e

as
so

rt
at

iv
it

y
[7

3]

D
eg

re
e

G
in

i [
90

]

D
en

si
ty

 [
75

]

R
ad

iu
s

[5
2]

N
u

m
. t

ot
al

B
et

w
ee

nn
es

s
[7

4]

C
lo

se
ne

ss
 [

75
]

C
lu

st
er

in
g.

 c
oe

f.
[1

03
]

C
or

en
es

s
[9

5]

Ec
ce

nt
ri

ci
ty

 [
52

]

H
IT

S
[5

9]

K
at

z
ce

nt
ra

lit
y

[5
6]

Pa
ge

R
an

k
[1

0]

N
u

m
. t

ot
al

B
et

w
ee

nn
es

s
[7

4]

D
is

ta
nc

e
[7

5]

Em
be

dd
ed

ne
ss

 [
10

9]

G
eo

de
si

cs

N
ei

gh
bo

r
ov

er
la

p
[6

5]

N
u

m
. t

ot
al

 Indiv. Global

N
u

m
. t

ot
al

C
om

m
. S

iz
e

C
om

m
. D

eg
re

e

C
om

m
. C

lo
se

ne
ss

 M
od

ul
ar

it
y

[4
,1

8]

Ed
ge

 G
in

i [
90

]

RELISON ✔ ✔ ✔ ✔ ✔ ✔ ✔ 18 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 14 ✔ ✔ ✔ ✔ ✔ 11 ✔ ✔ ✔ ✔ 8
Jung ✔ 2 ✔ ✔ ✔ ✔ ✔ 8 ✔ ✔ 2 ✔ 2
NetworkX ✔ ✔ ✔ ✔ ✔ ✔ 11 ✔ ✔ ✔ ✔ ✔ ✔ 12 ✔ ✔ ✔ 7 ✔ ✔ ✔ ✔ 8
Graph-tool ✔ ✔ ✔ ✔ 8 ✔ ✔ ✔ ✔ ✔ ✔ 9 ✔ ✔ ✔ 4 ✔ ✔ 3
JGraphT ✔ ✔ ✔ 4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 10 ✔ ✔ ✔ ✔ ✔ 7 0
iGraph ✔ ✔ ✔ ✔ ✔ ✔ 10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 12 ✔ ✔ ✔ 5 ✔ ✔ 3
SNAP ✔ 3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ 13 ✔ ✔ ✔ 5 ✔ ✔ ✔ ✔ 4
Neo4j ✔ 1 ✔ ✔ ✔ ✔ ✔ 9 ✔ 1 0

Table 4. Structural metrics for social network analysis.

SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al.

push-pull model [23,24,25], library users can build custom diffu-
sion protocols. Protocols define the way people in the network
choose information pieces to propagate, which users receive
and/or read the contents, under which criteria a user propagates
one of the received contents, etc.

To analyze the outcome of these simulations, the module in-
cludes several metrics for such aspects as diffusion speed, how
equally users receive new information, and how novel and diverse
is the information received by the people in the social network
[93].

3.5 Content
Finally, the content module works with the different contents gen-
erated by the users. At the moment of writing this paper, it can be
just used to generate inverted indexes [5,12] to store the infor-
mation about these contents (so they can be used for executing
content-based recommendation approaches). In the future, this
might be extended to study search problems in social network en-
vironments.

3.6 Executable programs
In addition to the previous modules, the RELISON framework pro-
vides a series of command-line programs that can be executed to
perform different tasks:
• Link recommendation: the main program allows executing

and evaluating recommendations using a) accuracy [5] and b)
novelty and diversity [14] metrics. Another analyzes the ef-
fects of recommendation on the network structure [90,93].
The third program applies reranking algorithms over previ-
ously computed recommendations. A fourth program com-
putes feature vectors for supervised algorithms [66].

• Link prediction. Differently from link recommendation,
there is a single program to run and evaluate link prediction
algorithms. However, we can also measure the effect of link
prediction on network structure with the same program we
provide for contact recommendation.

• Social network analysis. Two programs are provided: one
that analyzes the structural properties of networks, and one

that runs different community detection algorithms on a so-
cial network.

• Information diffusion. One program runs the simulation
cycle, and another one carries out a set of measurements on
the simulation.

• Other: we provide additional programs for a) generating ran-
dom network graphs and b) creating inverted indexes from
user-generated contents.

All these programs can be configured via their input parameters
and YAML configuration files. In the next section, we illustrate a
use case, in which we apply some of the previous programs to
understand the effect of link recommendation on network struc-
ture and information diffusion.

4 EXAMPLE USE CASE
We use an example to illustrate how RELISON works, following
[93]: given a social network, we first generate recommendations
for a set of users; then we evaluate their effects on the network,
and finally, we analyze how information propagates through the
network.

4.1 Data
We run our example experiments over a social network graph
downloaded from Twitter, which has been used in previous work
[90,91,93]. In order to obtain it, we downloaded from the Twitter
API all the tweets posted by a set of 10,000 users from June 16th to
July 16th 2015. Then, we built a directed interaction network,
where a directed link between two users indicates the source user
has mentioned the target user, or retweeted one of their tweets,
as reflected in the set of collected tweets.

For the experiments in this example, we split the network into
training and test subsets: all interactions before July 9th 2015 make
up the training set, and the remaining ones the test set. Any edge
appearing in both sets is removed from the test set, to avoid test
data leakage. The frequency of interactions between each pair of
users before the split time is used as the weight of the correspond-
ing edge. We summarize in Table 6 the properties of this dataset,
which is available in the GitHub repository, along with the code.
The file names we shall use throughout the use case correspond
to the names of the files in the repository.

4.2 Running link recommendations
Recommendation algorithms are run in the recommendation pro-
gram provided in the framework. The program receives: a) the

C
on

ne
ct

ed
 c

om
p.

 [
75

]

Fa
st

 G
re

ed
y.

 [
10

3]

In
fo

m
ap

 [
87

]

La
be

l p
ro

pa
ga

ti
on

 [
82

]

Lo
uv

ai
n

[9
0]

Sp
in

gl
as

s
[8

3]

W
al

kt
ra

p
[8

1]

N
u

m
. t

ot
al

RELISON ✔ ✔ ✔ ✔ ✔ 8
Jung ✔ 4
NetworkX ✔ 3
iGraph ✔ ✔ ✔ ✔ ✔ ✔ ✔ 12
SNAP ✔ 5
Neo4j ✔ ✔ ✔ 7
CDLib ✔ ✔ ✔ ✔ ✔ 40

Table 5. Community detection algorithms.

Multigraph ✘
Directed ✔
Weighted ✔
Users 9,528
Training edges 170,425
Test edges 54,335
Tweets (total) 1,558,518
Tweets (test) 622,795

Table 6. Details of the Twitter dataset.

RELISON SIGIR’22, July, 2022, Madrid, Spain

training and test networks (along with their configuration param-
eters), b) a YAML configuration file containing the information
about link recommendations and metrics, c) the output directory,
and d) a few additional recommendation parameters. The latter
include the cutoff for the recommendation, whether recommen-
dations should be produced for all users or just the ones involved
in the test subset, and whether reciprocating link recommenda-
tion is allowed.

We run four link recommendation algorithms in this example:
BM25 [84,91], implicit matrix factorization [49], popularity-based
and random recommendation, with the hyperparameter configu-
ration reported in [91]. We take a cutoff of 10 recommended links
per user and, to avoid trivializing the problem, we do not consider
recommending reciprocal edges. We use nDCG@10 and MAP@10
as evaluation metrics.

The command line for running the program is as follows:

where multigraph, readtypes and selfloops take the false
value, directed and weighted take true, and cutoff is 10.

We show part of the configuration file in Figure 2. We show in
red the identifiers of the algorithms, and in blue the name of the
algorithm parameters. We can see in the figure the configuration
of the implicit matrix factorization algorithm [49]: the number of
latent factors is 𝑘 = 300, the regularization parameter is 𝜆 = 150,
the rating confidence parameter is 𝛼 = 40, and the algorithm does
not consider edge weights. The configuration for the rest of algo-
rithms is available in the full file, which can be accessed through
the link provided in the figure. Table 7 shows the outcome of this
program. Confirming results reported in previous publications
[91], iMF is the best algorithm under this setting, followed by
BM25. As expected, popularity and random recommendation
achieve much lower accuracy.

4.3 Effects on network structure
Once recommendations are computed and the effectiveness of the
algorithms has been measured, we analyze the effect of recom-
mendations on network structure. We use for this purpose two of
the programs included in the framework.

We first check the original structural properties of the network
using the sna program, which takes as input the network, a YAML
configuration file containing the metrics to use, and a directory in
which to store the outcome. The command line for this program
is:

where --distances is an optional flag for precomputing the dis-
tances between users.

We then run the program named effects, that adds a set of
recommended links back to the network from which the recom-
mendations are produced (as in [90,93]). The structural metrics of
interest are then computed over this extended network. The pro-
gram takes as input the training and test networks (along with

their configuration), a directory containing the recommendations,
the YAML configuration file, a file for storing the output, the rec-
ommendation cutoff, a parameter indicating whether we wish to
compute edge / pair metrics over all the network or just the rec-
ommended pairs, and a parameter indicating whether all recom-
mended edges should be added or only the relevant ones (those
appearing in the test set). The command line for this program is
the following:

We now measure three properties of the network: the global

clustering coefficient, the eccentricity of nodes, and the embed-
dedness of edges. As both sna and effects programs measure the
same properties (over different networks), they share the same
YAML configuration file. We show the YAML file for this experi-
ment in Figure 3, with red for the metric names, and purple for
their input parameters.

In our test, we measure the embeddedness of all the edges in
the network (i.e. we set use-all-edges to true) and, following
previous work [90,93], we add all the recommended links to the
original network (i.e. we set only-rel to false). Results for exe-
cuting these two programs are shown in Table 8. We see that dif-
ferent algorithms have diverse effects on the network. For in-
stance, random recommendation reduces the value of all metrics

java -jar RELISON.jar recommendation train.txt test.txt

multigraph directed weighted selfloops readtypes algo-

rithms-example.yaml output/ cutoff

java -jar RELISON.jar sna train.txt multigraph directed

weighted selfloops metrics-example.yaml output/ --distances

java -jar RELISON.jar effects train.txt test.txt multigraph

directed weighted selfloops rec-folder/ metrics-exam-

ple.yaml output.txt cutoff use-all-edges only-rel

--distances

Figure 2. YAML configuration file for link
recommendation.

algorithms:
 iMF:
 k:
 type: int
 values: 300
 lambda:
 type: double
 values: 150.0
 alpha:
 type: double
 values: 40.0
 weighted:
 type: boolean
 values: false
 BM25:
 <...>
metrics:
 nDCG:
 cutoff:
 type: int
 values: 10
 MAP:
 <...>

Link: https://github.com/ir-uam/RELISON/blob/master/Example
configuration files/algorithms-example.yml

 nDCG@10 MAP@10

BM25 0.10416 0.04399
iMF 0.13865 0.06618
Popularity 0.05723 0.02908
Random 0.00107 0.00030

Table 7. Recommendation example results.

https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/algorithms-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/algorithms-example.yml

SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al.

with respect to the training network, while iMF has the opposite
effect.

4.4 Effects on information diffusion
To conclude our example, we study the effect of recommendation
on information diffusion.

For this purpose, the diffusion program simulates the infor-
mation flow through the network. The program receives as input
a YAML configuration file, the result output folder, the number of
times we run each simulation, the network data, files containing
the identifiers of users and content items (here, tweets) to be
shared, and a file providing the authorship relationship between
users and items. Optionally, we can read a file with recommended
links to be added to the network, and additional information like
user and item features. In this example, we use tweets as content
items and hashtags as tweet features. The command line for run-
ning the program is the following:

We now simulate the diffusion of information over the training

graph introduced in Section 4.1 and the extended versions of this
graph after adding the links recommended by the algorithms in
section 4.2. The information to be propagated are the tweets cre-
ated by users in the network after the time of the split.

Figure 4 shows the YAML configuration file. For each simula-
tion, we must provide the program with three elements. First, a
diffusion protocol: in the example, we use one of the pre-config-
ured protocols, the independent cascade model [40], in which

users propagate a piece of information received from another user
with a fixed probability (here, 𝑝 = 0.001). In addition, each user
propagates one of her own created content items. Second, a stop
condition, that indicates when the simulation must finish. Here,
we stop it after 1,000 iterations. And third, a set of filters, which
clean all the received information before the simulation starts.
Here, we apply two different filters: the first one removes all the
information items without a creator in the training graph; the sec-
ond removes the tweets without any hashtag.

Once the diffusion simulations have been run and their trace
is stored, we run the second program, diffusion-eval, for ana-
lyzing the properties of the information flow across the network.
This second program receives all data that was provided to the
diffusion program (the network, the user-generated contents,
etc.) and, in addition, a folder containing the trace produced by
the simulations to be analyzed, and an output directory in which
to store the metric results. The command line for this program is
then:

The YAML configuration file for this program is illustrated in

Figure 5. In this case, it has two parts: a list of data filters (the same
as in the configuration file for the diffusion program), and the
diffusion properties we want to measure. In this example, we are
measuring two properties: the diffusion speed (how many infor-
mation items have been received by all the users in the network
over time), and a diversity metric, measuring how balanced the
distribution of the received hashtags in the network is (using the
complement of the Gini index [26]).

We plot the outcome of this program for our example in Figure
6, where the x axis shows the number of iterations in the simula-
tion, and the y axis shows the value of each diffusion metric at the

java -jar RELISON.jar diffusion diffusion-example.yaml out-

put/ numReps train.txt multigraph directed weighted

selfloops readtypes user-index.txt info-index.txt

tweets.txt -infofeats tweet-hashtag.txt (-rec rec-file.txt)

java -jar RELISON.jar diffusion-eval diffusion-metrics-ex-

ample.yaml train.txt multigraph directed weighted selfloops

readtypes user-index.txt info-index.txt tweets.txt diffu-

sion/ output/ -infofeats tweet-hashtag.txt

Figure 3. YAML configuration file for measuring structural
properties of the network.

metrics:
 Clustering coefficient:
 type: graph
 params:
 uSel:
 type: orientation
 values: IN
 vSel:
 type: orientation
 values: OUT
 Eccentricity:
 type: vertex
 Embeddedness:
 type: edge
 <...>

Link: https://github.com/ir-uam/RELISON/blob/master/Example
configuration files/metrics-example.yml

 Clustering

coefficient
Average node
eccentricity

Average edge
embeddedness

BM25 0.12224 6.19689 0.02799
iMF 0.09851 6.69626 0.02571
Popularity 0.07575 6.00084 0.01542
Random 0.04839 4.25210 0.01479
Original network 0.05621 6.67338 0.02431

Table 8. Structural metrics example results.

Figure 4. YAML configuration file for the diffusion simula-
tion.

simulations:
- filters:
 Creator:
 Information feature:
 feature:
 type: string
 value: hashtag
 protocol:
 name: Independent cascade model
 type: PRECONFIGURED
 params:
 numOwn:
 type: int
 value: 1
 prob:
 type: double
 value: 0.001
 stop:
 name: Num. iter
 params:
 numIter:
 type: int
 value: 1000

Link: https://github.com/ir-uam/RELISON/blob/master/Example
configuration files/diffusion-example.yml

https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/metrics-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/metrics-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-example.yml

RELISON SIGIR’22, July, 2022, Madrid, Spain

given point of the simulation. As can be observed, adding the links
of all recommendations increases the speed of diffusion but, in
general, decreases the diversity of the information that users re-
ceive – the only exception is the random recommender, which
also increases the diversity of the information received by the us-
ers.

5 CONCLUSION
We have introduced RELISON, an extensible Java framework for
experimentation in link recommendation. The framework pro-
vides a large collection of state-of-the-art contact recommenda-
tion algorithms, along with ranking-based metrics for evaluating
them, including accuracy, novelty and diversity metrics [13,14].
The library allows measuring structural properties of networks –
by the implementation of more than fifty network analysis met-
rics –, finding communities and analyzing how the information
travels through social networks.

To the best of our knowledge, RELISON represents the first
framework addressing link prediction a proper recommendation
task, and also the first to consider the effects that the recommen-
dations have on the network.

The framework can be extended in the future to include more
link recommendation and prediction algorithms, like those based
on graph embeddings [42,70]. We plan to add further functionality
for more general social recommendation [100], where we might
consider the traces and structures of online social networks to
support the recommendation of items like the contents generated
by the users in the network (tweets, posts).

ACKNOWLEDGMENTS
This work has been partially funded by the Spanish Government
(grant ref. PID2019-108965GB-I00). This work was carried out as
part of the Infinitech project which is supported by the European
Union’s Horizon 2020 Research and Innovation programme under
grant agreement no. 856632.

REFERENCES
[1] Lada A. Adamic and Eytan Adar. 2003. Friends and neighbors on the Web. So-

cial Networks 25, 3 (July 2003), 211-230. DOI: 10.1016/S0378-8733(03)00009-1.
[2] Luca M. Aiello and Nicola Barbieri. 2017. Evolution of Ego-networks in Social

Media with Link Recommendations. In Proceedings of the 10th ACM interna-
tional conference on Web Search and Data Mining (WSDM 2017). ACM, Cam-
bridge United Kingdom, 111-120. DOI: 10.1145/3018661.3018733.

[3] V. Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice
A. Merra, Claudio Pomo, Francesco M. Donini and Tomasso Di Noia. 2021. EL-
LIOT: a Comprehensive and Rigorous Framework for Reproducible Recom-
mender Systems Evaluation. In Proceedings of the 44th ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2021). ACM,
Online, in press.

[4] Alexandre Arenas, Jordi Duch, Alberto Fernández and Sergio Gómez. 2007. Size
reduction of complex networks preserving modularity. New Journal of Physics
9, 6 (June 2007), Article 176. DOI: 10.1088/1367-2630/9/6/176.

[5] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 2011. Modern Information Re-
trieval: The Concepts and Technology Behind Search (2nd ed.). Pearson Education
Ltd.

[6] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random
Networks. Science 286, 5439 (September 1999), 509-512. DOI: 10.1126/sci-
ence.286.5439.509.

[7] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy. 2009. Gephi: An Open
Source Software for Exploring and Manipulating Networks. In Proceedings of
the 3rd AAAI Conference on Web and Social Media. AAAI.

[8] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte and Ettiene Le-
febvre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, (October 2008), Article P10008.
DOI: 10.1088/1742-5468/2008/10/p10008.

[9] danah m. boyd and Nicole B. Ellison. 2007. Social Network Sites: Definition,
History, and Scholarship. Journal of Computer-Mediated Communication 13, 1
(October 2007), 210-230. DOI: 10.1111/j.1083-6101.2007.00393.x.

[10] Sergey Brin and Larry Page. 1998. The Anatomy of a Large-Scale Hypertextual
Web Search Engine. In Proceedings of the 7th international conference on World
Wide Web (WWW 1998). Elsevier, Brisbane, Australia, 107-117. DOI:
10.1016/S0169-7552(98)00110-X.

[11] Chris Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Over-
view. Microsoft Technical Report MSR-TR-2010-82.

[12] Stefan Büttcher, Charles L.A. Clarke and Gordon V. Cormack. 2010. Infor-
mation Retrieval: Implementing and Evaluating Search Engines. MIT Press.

[13] Rocío Cañamares, Pablo Castells and Alistair Moffat. 2020. Offline evaluation
options for recommender systems. Information Retrieval Journal 23 (August
2020), 387-410. DOI: 10.1007/s10791-020-09371-3.

[14] Pablo Castells, Neil J. Hurley and Saúl Vargas. 2015. Novelty and Diversity in
Recommender Systems. In: F. Ricci, L. Rokach, B. Shapira (eds.) Recommender
Systems Handbook (2nd. ed). Springer, Boston, MA, USA, 881-918. DOI:
10.1007/978-1-4899-7637-6_26.

[15] Olivier Chapelle, Shihao Ji, Emre Velipasaoglu, Larry Lai and Su-Lin Wu. 2011.
Intent-based diversification of web search results: metrics and algorithms. In-
formation Retrieval 14, 6 (May 2011), 572-592. DOI: 10.1007/s10791-011-9167-7

[16] Pavel Y. Chebotarev and Elena V. Shamis. 1997. The matrix-forest theorem and
measuring relations in small social groups. Automation and Remote Control 58,
9 (September 2007), 125-137.

[17] Aaron Clauset, Christopher Moore and Mark E.J. Newman. 2008. Hierarchical
structure and the prediction of missing links in networks. Nature 453 (May
2008), 98-101. DOI: 10.1038/nature06830.

[18] Aaron Clauset, Mark. E.J. Newman and Christopher Moore. 2004. Finding com-
munity structure in very large networks. Physical Review E 70, 6 (December
2004), Article 066111. DOI: 10.1103/PhysRevE.70.066111.

[19] Federico Corò, Gianlorenzo D’Angelo and Yllka Velaj. 2019. Recommending
Links to Maximize the Influence in Social Networks. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI 2019). IJCAI, Ma-
cao, China, 2195-2201. DOI: 10.24963/ijcai.2019/304

Figure 5. YAML configuration file for the diffusion simula-
tion metrics.

filters:
 Creator:
 Information feature:
 feature:
 type: string
 value: hashtag
metrics:
 Speed:
 Global feature Gini complement:
 feature:
 type: string
 value: hashtag
 userFeature:
 type: boolean
 value: false
 unique:
 type: boolean
 value: true

Link: https://github.com/ir-uam/RELISON/blob/master/Example
configuration files/diffusion-metrics-example.yml

Figure 6. Results of the information diffusion simulation.

0
2
4
6
8

10
12

0 250 500 750 1,000

Sp
ee

d
(x

 1
06)

Iteration

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0 250 500 750 1,000

H
as

ht
ag

 G
in

i c
om

pl
.

Iteration
020

0 250 500 750 1,000Sp ee d (…

Iteration
Original BM25 iMF Popularity Random

https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1145/3018661.3018733
https://doi.org/10.1088/1367-2630/9/6/176
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1111/j.1083-6101.2007.00393.x
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1007/s10791-020-09371-3
https://doi.org/10.1007/978-1-4899-7637-6_26
https://doi.org/10.1007/s10791-011-9167-7
https://doi.org/10.1038/nature06830
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.24963/ijcai.2019/304
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-metrics-example.yml
https://github.com/ir-uam/RELISON/blob/master/Example%20configuration%20files/diffusion-metrics-example.yml

SIGIR’22, July, 2022, Madrid, Spain J. Sanz-Cruzado et al.

[20] Gabor Csardi, Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems, 1695 (2006).

[21] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi and Dietmar
Jannach. 2021. A Troubling Analysis of Reproducibility and Progress in Rec-
ommender Systems Research. ACM Transactions on Information Systems 39, 2
(March 2021), Article 20. DOI: 10.1145/3434185.

[22] Elizabeth M. Daly, Werner Geyer, David R. Millen. 2010. The Network Effects
of Recommending Social Connections. In Proceedings of the 4th ACM Confer-
ence on Recommender Systems (RecSys 2010). ACM, Barcelona, Spain, 301-304.
DOI: 10.1145/1864708.1864772.

[23] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Dan Swinehart and Doug Terry. 1987. Epidemic Algorithms for Replicated Da-
tabase Maintenance. In Proceedings of the 6th annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC 1987). ACM, Vancouver, BC, Canada, 1-
12. DOI: 10.1145/41840.41841.

[24] Benjamin Doerr, Mahmoud Fouz and Tobias Friedrich. 2011. Social Networks
Spread Rumors in Sublogarithmic Time. In Proceedings of the 43rd Annual Sym-
posium on Theory of Computing (STOC 2011). ACM, San Jose, California, USA,
21-30. DOI: 10.1145/1993636.1993640.

[25] Benjamin Doerr, Mahmoud Fouz and Tobias Friedrich. 2012. Why Rumors
Spread So Quickly in Social Networks?. Communications of the ACM 55, 6 (June
2012), 70-75. DOI: 10.1145/2184319.2184338.

[26] Robert Dorfman. 1979. A Formula for the Gini Coefficient. The Review of Eco-
nomics and Statistics 61, 1 (February 1979), 146-149. DOI: 10.2307/1924845.

[27] David Easley and Jon M. Kleinberg. 2010. Networks, Crowds and Markets. Cam-
bridge University Press.

[28] Michael D. Ekstrand. 2020. LensKit for Python: Next-Generation Software for
Recommender System Experiments. In Proceedings of the 29th ACM interna-
tional Conference on Information & Knowledge Management (CIKM 2020). ACM,
Online, 2999-3006. DOI: 10.1145/3340531.3412778.

[29] Ivan Erdelyi. 1967. On the matrix equation Ax = λBx. Journal of Mathematical
Analysis and Applications 17, 1 (January 1967), 119-132. DOI: 10.1016/0022-
247X(67)90169-2.

[30] Paul Erdös and Alfréd Rényi. 1959. On Random Graphs I. Publicationes Mathe-
maticae Debrecen (1959), 290-297.

[31] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Let-
ters 27, 8 (June 2006), 861–874. DOI: 10.1016/j.patrec.2005.10.010.

[32] Daniel Fleder and Kartik Hosanagar. 2009. Blockbuster Culture’s Next Rise or
Fall: The Impact of Recommender Systems on Sales Diversity. Management Sci-
ence 55, 5 (May 2009), 697-712. DOI: 10.1287/mnsc.1080.0974.

[33] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3
(February 2010), 75-174. DOI: 10.1016/j.physrep.2009.11.002.

[34] François Fouss, Alain Pirotte, Jean-Michel Renders and Marco Saraens. Ran-
dom-Walk Computation of Similarities between Nodes of a Graph with Appli-
cation to Collaborative Recommendation. IEEE Transactions on Knowledge and
Data Engineering 19, 3 (March 2007), 355–369. DOI: 10.1109/TKDE.2007.46.

[35] Eibe Frank, Mark A. Hall and Ian H. Witten. 2016. The WEKA Workbench. In:
Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Morgan
Kaufmann, 533-552. DOI: 10.1016/B978-0-12-804291-5.00024-6.

[36] Yasser Ganjisaffar, Rich Caruana and Cristina Videira Lopes. 2011. Bagging
Gradient-boosted Trees for High Precision, Low Variance Ranking Models. In
Proceedings of the 34th ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2011). ACM, Beijing, China, 85-94. DOI:
10.1145/2009916.2009932.

[37] Zeno Gantner, Steffen Rendle, Cristoph Freudenthaler and Lars Schmidth-
Thieme. 2011. MyMediaLite: a free recommender system library. In Proceedings
of the 5th ACM Conference on Recommender Systems (RecSys 2011). ACM, Chi-
cago, Illinois, USA, 305-308. DOI: 10.1145/2043932.2043989.

[38] Michelle Girvan, Mark E.J. Newman. 2002. Community structure in social and
biological networks. Proceedings of the National Academy of Science of the USA
99, 12 (June 2002), 7821-7826. DOI: 10.1073/pnas.122653799.

[39] Ashish Goel, Pankaj Gupta, John Sirois, Dong Wang, Aneesh Sharma and Siva
Gurumurthy. 2015. The Who-To-Follow system at Twitter: Strategy, algo-
rithms and revenue impact. Interfaces 45, 1 (February 2015), 98-107. DOI:
10.1287/inte.2014.0784.

[40] Jacob Goldenberg, Barak Libai and Eitan Muller. 2001. Talk of the Network: A
complex System Look at the Underlying Process of Word-of-Mouth. Marketing
letters 12 (August 2001), 211-223. DOI: 10.1023/A:1011122126881

[41] Mark S. Granovetter. 1973. The Strength of Weak Ties. American Journal of
Sociology 78, 6 (May 1973), 1360-1380. DOI: 10.1086/225469.

[42] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge Discovery and Data mining (KDD 2016). ACM, San Francisco, Cal-
ifornia, USA, 855-864. DOI: 10.1145/2939672.2939754.

[43] Guibing Guo, Jie Zhang, Zhu Sun and Neil Yorke-Smith. 2015. LibRec: A Java
Library for Recommender Systems. In Posters, Demos, Late-breaking Results and
Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation and
Personalization (UMAP 2015). Dublin, Ireland.

[44] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang and Reza
Zadeh. 2013. WTF: The Who to Follow Service at Twitter. In Proceedings of the

22nd international conference on World Wide Web (WWW 2013). ACM, Rio de
Janeiro, Brazil, 505-514. DOI: 10.1145/2488388.2488433

[45] Ido Guy. 2018. People Recommendation on Social Media. In: P. Brusilovsky, D.
He (eds.) Social Information Access: Systems and Technologies. Lecture Notes in
Computer Science, vol 1045. Springer, Cham, 511-543. DOI: 10.1007/978-1-4899-
7637-6_15.

[46] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. 2008. Exploring network
structure, dynamics and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy 2008). SciPy, Pasadena, California, USA, 11-
15.

[47] John Hannon, Mike Bennett and Barry Smyth. 2010. Recommending Twitter
users to follow using content and collaborative filtering approaches. In Pro-
ceedings of the 4th ACM Conference on Recommender Systems. ACM, Barcelona,
Spain, 199-206. DOI: 10.1145/1864708.1864746.

[48] Herbert W. Hethcote. 2000. The Mathematics of Infectious Diseases. SIAM Re-
view 42, 4 (December 2000), 599-653. DOI: 10.1137/S0036144500371907

[49] Yifan Hu, Yehuda Koren and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings of the 8th IEEE International Confer-
ence on Data Mining (ICDM 2008). IEEE, Pisa, Italy, 263-272. DOI:
10.1109/ICDM.2008.22.

[50] Xinyi L. Huang, Mitul Tiwari, and Sam Shah. 2013. Structural Diversity in So-
cial Recommender Systems. In Proceedings of the 5th ACM RecSys Workshop on
Recommender Systems and the Social Web (RSWeb 2013) at the 7th ACM Confer-
ence on Recommender Systems (RecSys 2013). Hong Kong, China.

[51] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Jour-
nal of Open Software 5, 52 (August 2020), Article 2174. DOI: 10.21105/joss.02174.

[52] Aleksandar Ilić. 2012. On the extremal properties of average eccentricity. Com-
puter & Mathematics with Applications 64, 9 (November 2002), 2877-2885. DOI:
10.1016/j.camwa.2012.04.023.

[53] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulative Gain-Based Evalua-
tion of IR Techniques. ACM Transactions on Information Systems 20 (October
2002), 422-446. DOI: 10.1145/582415.582418.

[54] Paul Jaccard. 1901. Étude de la distribution florale dans une portion des Alpes
et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 142 (January
1901), 547-579. DOI: 10.5169/seals-266450.

[55] Glen Jeh and Jennifer Widom. 2002. SimRank: A Measure of Structural-Context
Similarity. In Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2002). ACM, Edmonton, Alberta,
Canada, 538-543. DOI: 10.1145/775047.775126.

[56] Leo Katz. 1953. A new status index derived from sociometric analysis. Psy-
chometrika 18 (March 1953), 39-43. DOI: 10.1007/BF02289026.

[57] David Kempe, Jon M. Kleinberg and Éva Tardos. 2003. Maximizing the Spread
of Influence through a Social Network. In Proceedings of the 9th ACM SIGKDD
international conference on Knowledge Discovery and Data mining (KDD 2003).
ACM, Washington, DC, USA, 137-146. DOI: 10.1145/956750.956769.

[58] Said Kerrache. 2021. LinkPred: a high performance library for link prediction
in complex networks. PeerJ Computer Science 7 (May 2021). DOI: 10.7717/peerj-
cs.521.

[59] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM 46, 5 (September 1999), 604-632. DOI:
10.1145/324133.324140.

[60] Yehuda Koren, Robert Bell and Chris Volinksy. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (August 2009), 30-37.
DOI: 10.1109/MC.2009.263.

[61] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-
Based Recommender Systems co-located with the 9th ACM Conference on Recom-
mender Systems (RecSys 2015). Vienna, Austria, 14-21.

[62] Elizabeth A. Leicht, Petter Holme and Mark E.J. Newman. 2006. Vertex similar-
ity in networks. Physical Review E 73, 2 (February 2006), Article 026120. DOI:
10.1103/PhysRevE.73.026120.

[63] Ronny Lempel and Schlomo Moran. 2001. SALSA: The Stochastic Approach for
Link-Structure Analysis. ACM Transactions on Information Systems 19, 2 (April
2001), 131-160. DOI: 10.1145/382979.383041.

[64] Jure Leskovec and Rok Sosič. SNAP: A General-Purpose Network Analysis and
Graph-Mining Library. ACM Transactions on Intelligent Systems and Technol-
ogy 8, 1 (October 2016), Article 1. DOI: 10.1145/2898361.

[65] David Liben-Nowell and Jon M. Kleinberg. 2007. The Link-Prediction Problem
for Social Networks. Journal of the American Society for Information Science and
Technology 58, 7 (March 2007), 1019-1031. DOI: 10.1002/asi.20591.

[66] Ryan N. Lichtenwalter, Jake T. Lussier and Nitesh V. Chawla. 2010. New per-
spectives and methods in link prediction. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge Discovery and Data mining
(KDD 2010). ACM, Washington, DC, USA, 243-252. DOI:
10.1145/1835804.1835837

[67] Ryan N. Lichtenwalter, Nitesh V. Chawla. 2011. LPmade: Link Prediction Made
Easy. The Journal of Machine Learning Research 12 (January 2011), 2489-2492.

[68] Linyuan Lü, Ci-Hang Jin and Tao Zhou. Similarity index based on local paths
for link prediction of complex networks. Physical Review E 80, 4 (October 2009),
Article 046122. DOI: 10.1103/PhysRevE.80.046122.

https://doi.org/10.1145/3434185
https://doi.org/10.1145/1864708.1864772
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/1993636.1993640
https://doi.org/10.1145/2184319.2184338
https://doi.org/10.2307/1924845
https://doi.org/10.1145/3340531.3412778
https://doi.org/10.1016/0022-247X(67)90169-2
https://doi.org/10.1016/0022-247X(67)90169-2
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1287/mnsc.1080.0974
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1109/TKDE.2007.46
https://doi.org/10.1016/B978-0-12-804291-5.00024-6
https://doi.org/10.1145/2009916.2009932
https://doi.org/10.1145/2043932.2043989
https://dx.doi.org/10.1073%2Fpnas.122653799
https://doi.org/10.1287/inte.2014.0784
https://doi.org/10.1023/A:1011122126881
https://doi.org/10.1086/225469
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2488388.2488433
https://doi.org/10.1007/978-1-4899-7637-6_15
https://doi.org/10.1007/978-1-4899-7637-6_15
https://doi.org/10.1145/1864708.1864746
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.21105/joss.02174
https://doi.org/10.1016/j.camwa.2012.04.023
https://doi.org/10.1145/582415.582418
https://doi.org/10.5169/seals-266450
https://doi.org/10.1145/775047.775126
https://doi.org/10.1007/BF02289026
https://doi.org/10.1145/956750.956769
https://doi.org/10.7717/peerj-cs.521
https://doi.org/10.7717/peerj-cs.521
https://doi.org/10.1145/324133.324140
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1103/PhysRevE.73.026120
https://doi.org/10.1145/382979.383041
https://doi.org/10.1145/2898361
https://doi.org/10.1002/asi.20591
https://doi.org/10.1145/1835804.1835837
https://doi.org/10.1103/PhysRevE.80.046122

RELISON SIGIR’22, July, 2022, Madrid, Spain

[69] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A sur-
vey. Physica A 390 (March 2011), 1150-1170. DOI: 10.1016/j.physa.2010.11.027.

[70] Zaiqiao Meng, Shangsong Liang, Hongyan Bao and Xiangliang Zhang. 2019.
Co-Embedding Attributed Networks. In Proceedings of the 12th ACM interna-
tional conference on Web Search and Data Mining (WSDM 2019). ACM, Mel-
bourne, Australia, 393-401. DOI: 10.1145/3289600.3291015.

[71] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis, Siwei Liu,
Yaxiong Wu, Xi Wang, Shangsong Liang, Yucheng Liang, Guangtao Zeng,
Junhua Liang and Qiang Zhang. 2020. BETA-Rec: Build, Evaluate and Tune
Automated Recommender Systems. In Proceedings of the 14th ACM Conference
on Recommender Systems (RecSys 2020). ACM, Online, 588-590. DOI:
10.1145/3383313.3411524

[72] Dimitrios Michail, Joris Kinable, Barak Naveh, John V. Sichi. JGraphT – A Java
Library for Graph Data Structures and Algorithms. ACM Transactions on Math-
ematical Software 46, 2 (June 2020), Article 16. DOI: 10.1145/3381449.

[73] Mark E.J. Newman. 2002. Assortative Mixing in Networks. Physical Review Let-
ters 89 (October 2002), Article 208701. DOI: 10.1103/PhysRevLett.89.208701.

[74] Mark E.J. Newman. 2004. Fast algorithm for detecting community structure in
networks. Physical Review E 69, 6 (June 2004), Article 066133. DOI:
10.1103/PhysRevE.69.066133.

[75] Mark E.J. Newman. 2018. Networks (2nd. ed). Oxford University Press.
[76] Mark E.J. Newman and Michelle Girvan. 2004. Finding and evaluating commu-

nity structure in networks. Physical Review E 69 (February 2004), Article
026113. DOI: 10.1103/PhysRevE.69.026113.

[77] Xia Ning, Christian Desrosiers and George Karypis. A Comprehensive Survey
of Neighborhood-Based Recommendation Methods. In: F. Ricci, L. Rokach, B.
Shapira (eds.) Recommender Systems Handbook (2nd ed.). Springer, Boston, MA,
USA, 37-77. DOI: 10.1007/978-1-4899-7637-6_2.

[78] Iván Palomares, James Neve, Carlos Porcel, Luiz Pizzato, Ido Guy and Enrique
Herrera-Viedma. Reciprocal Recommender Systems: Analysis of state-of-art
literature, challenges and opportunities towards social recommendation. Infor-
mation Fusion 69 (May 2021), 103-127. DOI: 10.1016/j.inffus.2020.12.001.

[79] Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2016. Centrality-
Aware Link Recommendations. In Proceedings of the 9th ACM International
Conference on Web Search and Data Mining (WSDM 2016). ACM, San Francisco,
California, 503-512. DOI: 10.1145/2835776.2835818.

[80] István Pilászy, Dávid Zibriczky and Domonkos Tikk. 2010. Fast ALS-based Ma-
trix Factorization for Explicit and Implicit Feedback Datasets. In Proceedings of
the 4th ACM Conference on Recommender Systems (RecSys 2010). ACM, Barce-
lona, Spain, 71-78. DOI: 10.1145/1864708.1864726.

[81] Pascal Pons and Matthieu Latapy. 2005. Computing Communities in Large Net-
works Using Random Walks. In Proceedings of the 20th International Symposium
on Computer and Information Sciences (ISCIS 2005). Lecture Notes in Computer
Science, vol. 3733. Springer, Istanbul, Turkey, 284-293. DOI:
10.1007/11569596_31.

[82] Usha N. Raghavan, Réka Albert and Soundar Kumara. 2007. Near line time al-
gorithm to detect community structures in large-scale networks. Physical Re-
view E 76, 3 (September 2007), Article 036106. DOI:
10.1103/PhysRevE.76.036106.

[83] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community
detection. Physical Review E 74, 1 (July 2006), Article 016110. DOI:
10.1103/PhysRevE.74.016110.

[84] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval
3, 4 (April 2009), 333-389. DOI: 10.1561/1500000019.

[85] Giulio Rossetti, Letizia Milli and Rémy Cazabet. 2019. CDLIB: a python library
to extract, compare and evaluate communities from complex networks. Applied
Network Science 4 (July 2019), Article 52. DOI: 10.1007/s41109-019-0165-9.

[86] Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sîrbu, Dino Pedreschi
and Fosca Giannotti. 2018. NDLIB: a python library to model and analyze dif-
fusion process over complex networks. International Journal of Data Science
and Analytics 5 (February 2018), 61-79. DOI: 10.1007/s41060-017-0086-6.

[87] Martin Rosvall and Carl T. Bergstrom. 2008. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy of
Sciences of the USA 105, 4 (January 2008), 1118-1123. DOI:
10.1073/pnas.0706851105.

[88] Aghiles Salah, Quoc-Tuan Truong and Hady W. Lauw. 2020. Cornac: A Com-
parative Framework for Multimodal Recommender Systems. Journal of Ma-
chine Learning Research 21, 95 (May 2020), 1-5.

[89] Javier Sanz-Cruzado. 2021. Contact recommendation in social networks: algo-
rithmic challenges, diversity and network evolution. PhD thesis. Universidad
Autónoma de Madrid.

[90] Javier Sanz-Cruzado and Pablo Castells. 2020. Beyond Accuracy in Link Pre-
diction. In Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds): BIAS 2020: Bias and
Social Aspects in Search and Recommendation.. Communications in Computer
and Information Science, vol 1245. Springer, Cham, 79-94. DOI: 10.1007/978-3-
030-52485-2_9

[91] Javier Sanz-Cruzado, Pablo Castells, Craig Macdonald and Iadh Ounis. 2020.
Effective Contact Recommendation in Social Networks by Adaptation of

Information Retrieval Models. Information Processing and Management 57, 5
(September 2020), Article 102285. DOI: 10.1016/j.ipm.2020.102285.

[92] Javier Sanz-Cruzado and Pablo Castells. 2018. Contact Recommendations in
Social Networks. In: I. Cantador, S. Berkovsky, D. Tikk (Eds.), Collaborative
Recommendations: Algorithms, Practical Challenges and Applications. World
Scientific Publishing, Singapore, 519-569. DOI: 10.1142/9789813275355_0016.

[93] Javier Sanz-Cruzado and Pablo Castells. 2018. Enhancing Structural Diversity
in Social Networks by Recommending Weak Ties. In Proceedings of the 12th
ACM Conference on Recommender Systems (RecSys 2018). ACM, Vancouver, BC,
Canada, 233-241. DOI: 10.1145/3240323.3240371.

[94] Venu Satuluri, Yao Wu, Xun Zheng, Yilei Qian, Brian Wichers, Qieyun Dai, Gui
Ming Tang, Jerry Jiang and Jimmy Lin. 2020. SimClusters: Community-Based
Representations for Heterogeneous Recommendations at Twitter. In Proceed-
ings of the 26th ACM SIGKDD international conference on Knowledge Discovery
and Data mining (KDD 2020). ACM, Online, 3183-3193. DOI:
10.1145/3394486.3403370.

[95] Stephen B. Seidman. 1983. Network structure and minimum degree. Social Net-
works 5, 3 (September 1983), 269-287. DOI: 10.1016/0378-8733(83)90028-X.

[96] Alina Sîrbu, Vittorio Loretto, Vito D.P. Servedio, Francesca Tria. 2017. Opinion
Dynamics: Models, Extensions and External Effects. In V. Loretto, M. Haklay,
V Servedio, G. Stumme, J. Theunis and F. Tria (eds.) Participatory Sensing, Opin-
ions and Collective Awareness. Springer, Cham, 363-401. DOI: 10.1007/978-3-
319-25658-0_17.

[97] Ana-Andreea Stoica, Christopher Riederer and Augustin Chaintreau. 2018. Al-
gorithmic Glass Ceiling in Social Networks: The effects of social recommenda-
tions on network diversity. In Proceedings of The Web Conference 2018 (WWW
2018). IW3C2, Lyon, France, 923-932. DOI: 10.1145/3178876.3186140.

[98] Jessica Su, Aneesh Sharma and Sharad Goel. 2016. The Effect of Recommenda-
tions on Network Structure. In Proceedings of the 25th International Conference
on World Wide Web (WWW 2016). IW3C2, Montréal, Québec, Canada, 1157-
1167. DOI: 10.1145/2872427.2883040.

[99] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang and Cong Geng.
2020. Are We Evaluating Rigorously? Benchmarking Recommendation for Re-
producible Evaluation and Fair Comparison. In Proceedings of the 14th ACM
conference on Recommender Systems (RecSys 2020). ACM, Online, 23-32. DOI:
10.1145/3383313.3412489.

[100] Jillian Tang, Xia Hu, Huan Liu. Social recommendation: a review. Social Net-
work Analysis and Mining 3 (November 2013), 1113-1133. DOI: 10.1007/s13278-
013-0141-9

[101] Saúl Vargas. 2015. Novelty and diversity evaluation and enhancement in rec-
ommender systems. PhD Thesis. Universidad Autónoma de Madrid.

[102] Saúl Vargas and Pablo Castells. 2011. Rank and relevance in novelty and diver-
sity metrics for recommender systems. In Proceedings of the 5th ACM Confer-
ence on Recommender Systems (RecSys 2011). ACM, Chicago, Illinois, 109-116.
DOI: 10.1145/2043932.2043955.

[103] Duncan J. Watts and Steven Strogatz. 1998. Collective dynamics of ‘small
world’ networks. Nature 393 (June 1998), 440-442. DOI: 10.1038/30918.

[104] Scott White and Padhraic Smyth. 2003. Algorithms for Estimating Relative Im-
portance in Networks. In Proceedings of the 9th ACM SIGKDD international con-
ference on Knowledge Discovery and Data mining (KDD 2003). ACM, Washing-
ton, DC, USA, 266-275. DOI: 10.1145/956750.956782.

[105] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh and
Deborah Estrin. 2018. OpenRec: a Modular Framework for Extensible and
Adaptable Recommendation Algorithms. In Proceedings of the 11th ACM inter-
national conference on Web Search and Data Mining (WSDM 2018). ACM, Marina
del Rey, California, USA, 664-672. DOI: 10.1145/3159652.3159681.

[106] Reza Zafarani, Mohammad A. 2014. Abassi and Huan Liu. Social Media Mining:
An Introduction. Cambridge University Press. DOI:
10.1017/CBO9781139088510.

[107] ChengXiang Zhai, William W. Cohen and John Lafferty. 2003. Beyond Inde-
pendent Relevance: Methods and Evaluation Metrics for Subtopic Retrieval. In
Proceedings of the 26th annual international ACM SIGIR conference on Research
and Development in Information Retrieval (SIGIR 2003). ACM, Toronto, Canada,
10-17. DOI: 10.1145/860435.860440.

[108] Shuai Zhang, Yi Tai, Lina Yao, Bin Wu and Aixin Sun. 2019. DeepRec: An Open-
Source Toolkit for Deep Learning based Recommendation. In Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI 2019). IJCAI,
Macao, China, 6581-6583. DOI: 10.24963/ijcai.2019/963.

[109] Jichang Zhao, Junjie Wu and Ke Xu. 2010. Weak ties: subtle role of information
diffusion in online social networks. Physical Review E 82, 1 (July 2010). DOI:
10.1103/PhysRevE.82.016105

https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1145/3289600.3291015
https://doi.org/10.1145/3383313.3411524
https://doi.org/10.1145/3381449
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1007/978-1-4899-7637-6_2
https://doi.org/10.1016/j.inffus.2020.12.001
https://doi.org/10.1145/2835776.2835818
https://doi.org/10.1145/1864708.1864726
https://doi.org/10.1007/11569596_31
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1561/1500000019
https://doi.org/10.1007/s41109-019-0165-9
https://doi.org/10.1007/s41060-017-0086-6
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1007/978-3-030-52485-2_9
https://doi.org/10.1007/978-3-030-52485-2_9
https://doi.org/10.1016/j.ipm.2020.102285
https://doi.org/10.1142/9789813275355_0016
https://doi.org/10.1145/3240323.3240371
https://doi.org/10.1145/3394486.3403370
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1007/978-3-319-25658-0_17
https://doi.org/10.1007/978-3-319-25658-0_17
https://doi.org/10.1145/3178876.3186140
https://doi.org/10.1145/2872427.2883040
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1007/s13278-013-0141-9
https://doi.org/10.1007/s13278-013-0141-9
https://doi.org/10.1145/2043932.2043955
https://doi.org/10.1038/30918
https://doi.org/10.1145/956750.956782
https://doi.org/10.1145/3159652.3159681
https://doi.org/10.1017/CBO9781139088510
https://doi.org/10.1145/860435.860440
https://doi.org/10.24963/ijcai.2019/963
https://doi.org/10.1103/PhysRevE.82.016105

