

Stock Recommendations for Individual Investors

: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling

Youngbin Lee^{1,*}, Yejin Kim^{1,*}, Javier Sanz-Cruzado², Richard McCreadie^{2,†}, Yongjae Lee^{1,†}

¹Ulsan National Institute of Science & Technology(UNIST), Republic of Korea ²University of Glasgow, United Kingdom * Equal contribution, [†]Co-corresponding authors

https://felab.unist.ac.kr

Introduction

1. Why is stock recommendation necessary?

- Irrational Investment Behavior of Individual Investors
 - Overconfidence, disposition effect, lottery preference, and herding (Ngoc, 2014)
 - The average investor significantly underperformed the S&P 500 over time (Murray, 2023)
- There are many excellent methods for portfolio performance
 - Modern Portfolio Theory (MPT)
 - However, individual investors do not typically follow these methods.

Individual investors tend to invest based on their own "preferences"

• Influences include: Psychological Factors, News, Peers, Emotion, Analyst recommendations, Global events, SNS, ESG, Risk aversion, Momentum ...

2. What should be considered in stock receommender system?

Tricky Trade-off!

Individual preference

You can lead a horse to water, but you can't make him drink.

Investment performance

Preliminaries

Problem Definition

User	Item	Time		Portfolio
u_1	i_1	1		
u_2	i_1	2		
u_1	i_2	3	i_1	
u_3	i_3	4		
	1000			
u_9	?	10	i_2	i_3

For each user and time, the model aims to recommend the top-k items.

Continuous-Time Dynamic Graph

User-item interactions that change over time.

Method

Portfolio Temporal Graph Network Recommender (PfoTGNRec)

(1) Dynamic Embedding Learning

- Memory embedding (GRU)
- We generate memory embeddings for each node to capture the dynamic nature, storing nodes' history.
- Graph embedding (GAT)
- Temporal embeddings for a dynamic graph are generated, learning collaborative signals.

(2) Mean-Variance Efficient Sampling

• Diversification score, motivated by MVECF (Chung et al., 2023)

$$y_{ui}^{MV} = rac{rac{\mu_i}{\gamma} - rac{1}{2} \sum_{j:j
eq i} rac{1}{|y_u|} \sigma_{ij}}{\sigma_i^2}$$

Stocks with **high returns** and **low risks** will have high diversification scores!

Baselines

Recommender models

Price-based models

Return, Sharpe ratio

two-step method

MVECF

BPR, WMF, LightGCN, SGL

DyRep, Jodie, TGAT, TGN

Stock recommendation models

• Preference based rank + Portfolio based rank \rightarrow Final rank

 $P_{u,t} = ext{top-ranked items from the final rank} \ N_{u,t} = ext{bottom-ranked items from the final rank}$

(3) Optimization: BPR Loss

 Bayesian Personalized Ranking (BPR) loss is applied to the pairs of positive and negative items

$$\mathcal{L}_{BPR} = \sum_{(u,p,n,t) \in D} -\log \sigmaig(\mathbf{z}_u(t)^T\mathbf{z}_p(t) - \mathbf{z}_u(t)^T\mathbf{z}_n(t)ig)$$

Data & Evaluation

Dataset

- Greek market Individual investor transactions
- Period Jan 2018 ~ Nov 2022
- Chronological split (8:1:1)
- **Preprocessing**: Buy orders, Item filtering, Daily portfolio
- Description 152,084 interactions, 8,337 users, 92 items
- Avg num of stocks in user portfolio: 6.26 (median 5)

Evaluation

- Interaction-based ranking strategy
- Recommendation Hit Ratio@k, NDCG@k (Normalized Discounted Cumulative Gain)
- Investment Return(R) and Sharpe ratio(SR) of equal-weighted portfolio
 - Difference, Percentage improvement

Experiment

RQ1. Combined Metric of User Preferences and Portfolio Performance

Our model offers the most balanced approach,

enhancing investment performance while reflecting individual preferences.

RQ2. Recommendation Performance RQ3. Portfolio Performance

Our model falls slightly short of TGN, sacrificing a certain level of recommendation performance. Our model records superior performance across most metrics, despite a few exceptions.

	Recommendation effectiveness				Portfolio performance							
Model	HR@3	HR@5	NDCG@3	NDCG@5	P(R)@3	P(R)@5	P(SR)@3	P(SR)@5	ΔR@3	ΔR@5	ΔSR@3	ΔSR@5
Pop*	0.1586	0.2787	0.1355	0.1845	0.5174	0.5479	0.5670	0.6193	-0.003	0.0106	0.1860	0.3533
WMF*	0.4654	0.5588	0.3797	0.4183	0.4561	0.4417	0.5228	0.5294	-0.0212	-0.0379	0.0374	0.0408
BPR*	0.5635	0.6538	0.4794	0.5166	0.5234	0.4970	0.5595	0.5594	0.0064	-0.0079	0.1499	0.1555
LightGCN*	0.5378	0.6399	0.4419	0.4841	0.5333	0.5041	0.5712	0.5660	0.0083	-0.0055	0.1664	0.1663
SGL*	0.5297	0.6054	0.4578	0.4888	0.5071	0.4912	0.5558	0.5531	-0.0003	-0.0223	0.1325	0.0908
Return	0.0389	0.0621	0.0274	0.0368	0.3065	0.3438	0.3403	0.3883	-0.1747	-0.1819	-0.5236	-0.4699
Sharpe	0.0453	0.0665	0.0324	0.0411	0.4137	0.4174	0.4743	0.4667	-0.0832	-0.1011	-0.1269	-0.1362
two-step*	0.2767	0.3834	0.2193	0.2629	0.4479	0.4425	0.5526	0.5743	-0.0227	-0.0335	0.1457	0.1849
MVECF*	0.2170	0.2321	0.2025	0.2087	0.4286	0.4149	0.5081	0.5068	-0.0426	-0.0644	-0.0281	-0.0482
DyRep	0.3047	0.4533	0.2243	0.2852	0.4581	0.4499	0.5383	0.5403	-0.0235	-0.034	0.0769	0.0919
Jodie	0.4324	0.5757	0.3247	0.3838	0.5156	0.4924	0.5757	0.5824	0.0074	-0.0022	0.2186	0.2617
TGAT	0.5138	0.6318	0.4100	0.4585	0.5826	0.5423	0.6129	0.6037	0.0460	0.0343	0.3178	0.3452
TGN	0.5673	0.6809	0.4611	0.5079	0.5405	0.5107	0.5612	0.5506	0.0260	0.0075	0.1959	0.1899
PfoTGNRec	0.5572	0.6674	0.4532	0.4986	0.5652	0.5434	0.6125	0.6147	0.0407	0.0349	0.3053	0.3649
Note: Models w	Note: Models with * exclude cold start user results. The best and second best performing models are highlighted in bold and underline, respectively.											

RQ4. Hyperparameter Study

We guide the optimization of our model for both recommendation and investment tasks, by analyzing trade-offs and interactions between six key hyperparameters.

- γ : hyperparameter for risk-aversion level
- λ_{MV} : balance between preference and portfolio performance