Enhancing Structural Diversity in Social Networks by Recommending Weak Ties

Javier Sanz-Cruzado and Pablo Castells Universidad Autónoma de Madrid {javier.sanz-cruzado,pablo.castells}@uam.es

Motivation

- The contact recommendation task
 - A social network $\mathcal{G} = \langle \mathcal{U}, E \rangle$
 - *U* Network users
- Given: - Neighborhoods $\Gamma(u)$ for each user $u \in \mathcal{U}$
- $\Gamma_{\rm in}(u) = \{v \in \mathcal{U} | (v, u) \in E\}$
- $\Gamma_{\text{out}}(u) = \{ v \in \mathcal{U} | (u, v) \in E \}$
- For each $u \in U$, predict k users which might be of interest $- u \in U \to \hat{\Gamma}_{out}(u) = \langle u_1, u_2, \dots, u_n \rangle, u_k \in \mathcal{U} \setminus (\{u\} \cup \Gamma_{out}(u))$
- Particularities w.r.t. classic recommendation
 - Items and users are the same set
 - Users (and consequently, items) are not isolated

Accuracy at the individual level

- Main focus of research and industry
- Targets the network density by correctly predicting as many edges as possible
- Measures individual gain
- However, further qualities may enhance the value of recommendation

Beyond the individual: global effects

- Users in networks are not isolated: few links \rightarrow global effects
- Recommendations affect the shape of the network
- Opportunity to steer the evolution of the network towards desirable properties

Beyond accuracy

- Novelty & diversity
- Many notions from social network analysis
- Structural diversity → weak ties

Structural diversity

- Weak ties
- Strength of a tie

Global redundancy: Links between communities

• Given a community division \mathcal{C} of the network

Community edge Gini complement (CEGC) - Considers redundancy between weak ties

Local redundancy: Transitive closure

• **Triadic closure:** smallest unit of structural redundancy

- Amount of time involved in the relationship
- Emotional intensity
- Intimacy (mutual confiding)
- Reciprocal services
- Examples
 - **Strong ties:** family, close friends
 - Weak ties: shopkeepers, people you meet at conferences...
- Utility
 - **Strong ties:** higher reliability and availability
 - Weak ties: global interaction advantages, enrichment of the information flow...
- Structural notions of weak ties: non-redundant links
- Metrics applied over extended network $\mathcal{G}' = \langle \mathcal{U}, E' \rangle$
 - Assume recommendations are accepted
 - $E' = E \cup \hat{E} \qquad \hat{E} = \{(u, v) \in \mathcal{U}^2_* | u \in \mathcal{U}, v \in \hat{\Gamma}_{out}(u)\}$

- Weak ties: links between communities
- Modularity Complement (MC)
 - Modularity compares Number of edges inside communities (strong ties) Expected number of them in a random conf. graph

 $\operatorname{Mod}(\mathcal{G}'|\mathcal{C}) = \frac{\sum_{u,v \in \mathcal{U}} (A_{uv} - |\Gamma_{out}(u)| |\Gamma_{in}(v)| / |E'|) \mathbb{1}_{[c(u)=c(v)]}}{|E'| - \sum_{u,v \in \mathcal{U}} (|\Gamma_{out}(u)| |\Gamma_{in}(v)| / |E'|) \mathbb{1}_{[c(u)=c(v)]}}$ - High modularity \rightarrow Few weak ties \rightarrow Low structural diversity

 $MC(\mathcal{G}'|\mathcal{C}) = \frac{1 - Mod(\mathcal{G}'|\mathcal{C})}{2}$

Limitation: it just considers the raw number of links crossing communities

- Analyzes distribution of links crossing communities Low CEGC \rightarrow Skewed distribution \rightarrow Low diversity High CEGC \rightarrow Balanced distribution \rightarrow High diversity - Based on the Gini Index
 - n_{ij} : Number of links between communities c_i, c_j $X(\mathcal{G}'|\mathcal{C}) = \{n_{ij} | i \neq j\} \cup \{\sum_{i}^{|\mathcal{C}|} n_{ii}\},\$ $N = |X(\mathcal{G}'|\mathcal{C})| = (|\mathcal{C}| - 1)|\mathcal{C}| + 1$ Sorted set: $x_1 \le x_2 \le \dots \le x_N$

a) High MC, low CEGC

Recommendation experiments

Data

- 2 Twitter samples (directed networks)
- Interaction graphs: $(u, v) \in E \iff u$ mentions, retweets v
- Temporal split
- Community detection algorithm: Louvain

	Complete network		Training network			Test network	
Dataset	#Users	#Edges	#Users	#Edges	#Comm.	#Users	#Edges
1 month	10,019	234,869	9,528	170,425	8	7,902	57,846
200 tweets	10,000	164,653	9,985	137,850	10	5,652	21,598

Recommender	Optimal parameters	P@10	R@10	MC	CEGC	CCC
Implicit MF	$k=260, \lambda=150, \alpha=40$	0.0625	0.1060	0.1550	0.0447	0.9766
Personalized SALSA	Authorities, $\alpha = 0.99$	0.0577	0.0990	0.1656	0.0447	0.9819
Adamic-Adar	und, in, und	0.0505	0.0697	0.1487	0.0413	0.9748
년 MCN	und, in	0.0476	0.0647	0.1461	0.0403	0.9746
6 Popularity	-	0.0234	0.0409	0.2947	0.0613	0.9890
T Jaccard	und, in	0.0169	0.0209	0.1464	0.0434	0.9652
Centroid CB	in	0.0156	0.0198	0.1652	0.0498	0.9627
Random	-	0.0006	0.0009	0.2797	0.0901	0.9839
Training graph	-	-	-	0.1464	0.039	0.9829
Implicit MF	$k=300, \lambda=150, \alpha=40$	0.0236	0.0589	0.2132	0.1326	0.9520
Adamic-Adar	und, in, und	0.0233	0.0540	0.2076	0.1180	0.9447
MCN	und, in	0.0222	0.0499	0.2048	0.1138	0.9433
Personalized SALSA	Authorities, $\alpha = 0.99$	0.0208	0.0516	0.2369	0.1412	0.9594
Centroid CB	in	0.0157	0.0333	0.2154	0.1251	0.9182
8 Jaccard	und, in	0.0132	0.0306	0.2041	0.1195	0.9065
Popularity	-	0.0098	0.0221	0.3371	0.1559	0.9822
Random	-	0.0003	0.0007	0.3317	0.2276	0.9795
Training graph	-	-	-	0.2081	0.1134	0.9559

Effect on information diffusion -

Hypothesis

b) High MC, high CEGC

The more structurally diverse is the recommendation, the more diverse and novel (non-redundant) will be the information flow through the network

Experiment description

- Start with a well-behaved baseline \rightarrow Implicit MF (most accurate method)
- Rerank baseline to enhance a structural metric of the network

Algorithms

- Neighborhood based: Most Common Neighbors, Adamic-Adar, Jaccard
- Random walks: Personalized SALSA
- **Content-based:** Centroid CB
- Classic recommendation: Implicit Matrix Factorization (MF)
- **Baselines:** random, popularity

How do state of the art algorithms perform in terms of structural diversity?

Metrics enhancement

- Enhance a global property μ of the network
- Rerank baseline recommendation by greedy maximization of objective function

 $\phi(S, f, \mu, \lambda) = (1 - \lambda) \sum_{u \in \mathcal{U}} \sum_{(u,v) \in S_{\mathcal{U}}} f(u, v) + \lambda \mu(\mathcal{G}'_S)$

• Algorithm: Global greedy reranking

Input: $\hat{E} \subset \mathcal{U}^2_*$ original recommendations original recommendation ranking function $f: \tilde{E} \to \mathbb{R}$ metric to optimize diversification cutoff $\lambda \in [0,1]$ degree of diversification $\mathcal{G} = \langle \mathcal{U}, E \rangle$ training graph modified recommendations (a set of ordered lists) Output: S begin $S \leftarrow \operatorname{sort}(\hat{E}, f) // \operatorname{Edges}$ are grouped by source node and sorted by ffor $u \in \mathcal{U}$ do **for** $i \leftarrow 1$ **to** k **do** $j_0 \leftarrow \arg \max \phi(j|S, u, i, f, \mu, \lambda) / S_u \equiv \operatorname{ranking} \text{ for user } u \text{ in } S$ $j:k \leq j \leq |S_u|$ if $\phi(j_0|S, u, i, f, \mu, \lambda) > \phi(i|S, u, i, f, \mu, \lambda)$ then swap (S_u, i, j_0) return S end

Information diffusion properties

- Notation
 - \mathcal{H} : Set of all hashtags
 - A tweet *i* is defined as a subset of \mathcal{H}
 - At time *t*, *u* has received the tweets $\mathcal{M}_u(t)$, containing the hashtags $\mathcal{H}_u(t)$
 - At time t, u has published $\mathcal{M}_{u}^{0}(t)$, containing the hashtags $\mathcal{H}_{u}^{0}(t)$
- Speed
 - Most analyzed network efficiency feature in diffusion processes
 - How many tweets are propagated and received?

speed(t) = $\sum_{u \in \mathcal{U}} |\mathcal{M}_u(t)|$

- **Novelty and diversity**
- Measured in terms of hashtags
- Novelty
 - How new is the information received by users?

- Simulate the flow of information through the extended network \mathcal{G}'
- Analyze properties of diffusion (speed, novelty & diversity)

Data

- Same networks as the ones used for the recommendation experiments •
- **Information to propagate:** Tweets •
 - originally published after the temporal split
 - containing hashtags which appear in (at least) 25 different tweets (avoid noise)

#Dataset	#Tweets	#Hashtags (unique)		
1 month	87,837	110,578 (1115)		
200 tweets	21,513	24,623 (378)		

Protocol

- Information is propagated to all followers •
- User *u* retweets a tweet only if she retweeted it in real life \rightarrow deterministic

Function $\phi(j|S, u, i, f, \mu, \lambda)$ // The dual objective function begin return $(1 - \lambda)$ norm $(f(S_u[j])) + \lambda$ norm $(\mu(\mathcal{G}'_{S(u;i/i)@k}))$ end

• Metrics for the different structural diversity rerankers (Implicit MF)

- External hashtag rate (EHR)

- Diversity
 - Are hashtags evenly distributed over the population?
 - Potential for diminishing filter bubbles
 - Hashtag Gini complement (HGC)

$$\begin{split} \mathrm{HGC}(t) &= 1 - \frac{1}{|\mathcal{H}| - 1} \sum_{j=1}^{|\mathcal{H}|} (2j - |\mathcal{H}| - 1) \ p(h_j|t) \\ p(h_j|t) &= \frac{|\{u \in \mathcal{U} | h \in \mathcal{H}_u(t)\}|}{\sum_{h^* \in \mathcal{H}} |\{u \in \mathcal{U} | h^* \in \mathcal{H}_u(t)\}|} \\ \mathrm{where} \ p(h_1|t) &\leq p(h_2|t) \leq \cdots \leq p(h_{|\mathcal{H}|}|t) \end{split}$$

Receival (t)Propagation (t+1)

Results

Conclusions

- Information diversity is improved by enhancing structural diversity properties of the network
 - Potential relevance in mitigating filter bubbles
- CEGC provides the best trade-off between accuracy, structural properties and information diversity
- Recommending weak ties improves the novelty of the information received by the different users

12th ACM Conference on Recommender Systems (RecSys 2018)