A Simple Multi-Armed Nearest-Neighbor Bandit for Interactive Recommendation

Javier Sanz-Cruzado, Pablo Castells and Esther López

Universidad Autónoma de Madrid {javier.sanz-cruzado,pablo.castells}@uam.es esther.lopezramos@estudiante.uam.es

Motivation

Arms -------

Interactive recommendation

More realistic perspective

Universidad Autónoma

de Madrid

- Recommendation operates in cycles
 - Users react to and interact with recommendations
 - The system gains further input from this interaction
 - The input is used in the following recommendations

Multi-armed bandits

- Select the best among several actions (arms)
- Exploration vs. exploration
 - Select arm with highest estimated value (**exploit**)
 - Select arm to gain knowledge (**explore**)

Bandit Recommender Systems

- Use of bandit algorithms to generate recommendations
- Usually arms = items
- **Personalized approaches:** contextual bandits
 - Stochastic versions of Probabilistic Matrix Factorization (PMF)

R

IR Group @ UAM

- Clusters of users/items
- **Our approach**: user-based kNN with stochastic (bandit-based) neighborhood selection •

Recommender bandits	Multi-armed bandits	Our approach
Items $i \in \mathcal{I}$	Arms	$\rangle \qquad \text{Neighbors } v \in \mathcal{U}$
Ratings $r(u, i)$	Rewards	$\left. \right\rangle \qquad \text{Ratings } r(u,i)$
Metric (e.g. CTR)	Estimated arm value	\rangle Cond. preference $P(u v)$
Target user $u \in \mathcal{U}$	Context	$\left. \begin{array}{c} \text{Target user } u \in \mathcal{U} \end{array} \right.$

• Algorithms: ε-greedy, UCB1, Thompson Sampling, etc.

Nearest-neighbor bandit Recommendation 5. Update u's conditional preferences with **Current state** $v \in \mathcal{U}_i = \{ w \in \mathcal{U} | r(w, i) \neq ? \}$ Update (Binary rating matrix) Items $(r(u,i_2) \neq ?)$ 1. Choose target $\gamma(u|v_2)$ 4. Obtain $r(u, i) \in \{0, 1\}$ user *u* Users $\mathcal{D}(u|v_3)$ 0 2. Choose u's optimal neighbor D(21/2) v_3 0 0 $\mathcal{R}: \mathcal{U} \times \mathcal{I} \to \{0, 1, ?\}$ $(r(u,i_5) \neq ?)$ v_4 ι_5 Neighbor v selects item i3.

to recommend

Neighbor bandit

- Given a user *u*, choose the best neighbor *v*
- Conditional preference: Instead of similarity, P(u|v) probability that u likes an item that v likes
- Thompson sampling bandit
 - Rewards considered as a Bernoulli distribution with mean P(u|v)
 - P(u|v) estimated from data using posterior Beta distributions, $p(u|v) \sim B(\alpha(v|u), \beta(v|u))$
 - Hits $\alpha(v|u)$: Positive common ratings between u and v: $\alpha(v|u) = \alpha_0 + \sum_{i \in \mathcal{I}} r(u,i)r(v,i)$
 - Misses $\beta(v|u)$: *v*'s positive ratings not shared by u. $\beta(v|u) = \beta_0 + \sum_{i \in \mathcal{I}} r(v, i) \alpha(v|u)$
 - Select *v* maximizing p(u|v)
- Recommend the item *i* that *v* likes most (ties randomly broken)
- Update $\alpha(w|u)$ for all users $w \in \mathcal{U}$ who have rated the recommended item *i*

Extension: k neighbors

- Given a target user *u*, select the best *k* neighbors
- Multiple play Thompson sampling bandit
- Pick $\mathcal{N}_k(u)$: the *k* users maximizing p(u|v)
- Recommend the item maximizing: $\arg \max_{i \in \mathcal{I}}$ $p(u|v)r_v(i)$ $v \in \overline{\mathcal{N}_k}(u)$
- Again, update $\alpha(w|u)$ for all users $w \in U$ who have rated *i*
- Penalizes exploration in favor of exploitation

Experiments

Data

- Implicit feedback datasets
 - 2 Twitter follows graphs (1 month, 200 tweets)
 - 2 FourSquare venue recommendation datasets (New York, Tokyo)
- Explicit ratings dataset: MovieLens 1M
 - We take ratings ≥ 4 as positive (r(u, i) = 1)

Evaluation approach

- **Offline evaluation:** simulate user feedback using offline data
- Extreme cold start: start with no ratings
- Random user selection (one at a time)
- **Metric**: cumulative recall fraction of discovered positive ratings (growth curve)

Dataset	#Users	#Items	#Ratings
FourSquare New York	1,083	38,333	227,428
FourSquare Tokyo	2,293	61,858	573,703
Twitter 1 month	9,511	9,511	650,937
Twitter 200 tweets	9,253	9,253	475,608
MovieLens 1M	6,040	3,706	1,000,209

Algorithms

Our approach: nearest-neighbors bandit • Bandits **Item-oriented:** ε-greedy, Thompson sampling

Collaborative filtering: matrix factorization, user-based kNN (cosine) Exploitation-only Sanity-check: most-popular, random

Results

Full text Code

Code for this paper is available at https://github.com/ir-uam/kNNBandit

13th ACM Conference on Recommender Systems