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• From Madrid, Spain

• NO. I DON’T SUPPORT REAL 
MADRID!! 

• Things I like:
• Books (fantasy, sci-fi)
• Videogames
• D&D
• Good food
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• People recommendation 
in social networks

• Multi-armed bandits

• Financial asset 
recommendations

• Profitability forecasting

• Biomedical 
NLP



What is this talk about?

Mild AI
No LLMs were harmed in 
this research

No Biomed
But I hope it gives you 
ideas in this space

Graphs
A lot of graphs!

In this talk, I will introduce people recommendation in online social 
networks and issues arising on it

People
Graphs involving people!
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Online social networks



Online social networks 

• Establish new connections

• Communication

• Share and receive information

• Changes to our society
• Politics

• Privacy

• Lifestyle

• Communication



Recommender systems

• Goal: From past user interactions, suggest items
they might be interested in.

• Multiple domains
• Audiovisual content: Netflix, Spotify

• E-commerce: Amazon, eBay

• Academic publications: Google Scholar, Mendeley

• Social networks: Twitter, Facebook



The recommendation task
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Contact recommendation
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• Items = users

• Availability of social relationships

• Rating matrix = adjacency matrix



Contact recommendation examples



Why contact recommendation?

• Particular characteristics
• Development of new methods

• Use of social network analysis

• Creation of new links
• Main asset of online social networks

• Communication channels

• Source of information

• Increase engagement of users



This presentation

Part I: Algorithmic models

Explore the adaptations of text information 
retrieval (IR) models to the contact 
recommendation task.

Part II: Network diversity

Study the effect of contact recommendations 
on the properties of social networks.





Motivations

Machine 
Learning

Link prediction / 
Specific methods

Recommender
systems

Contact
recommendation

Information
Retrieval¿ ?

A
d

ap
tatio

n
s

(Sanz-Cruzado & Castells 2018)



IR vs. Recommendation
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Wang et al. 2008, Valcarce et al. 2017)
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Use of IR models for contact recommendation

?

Inverted index

Query 
creator

Query

Neighbors of 𝑢

IR Engine

Target user 𝑢

Recommendation

0.8

0.5

IR System

But how effective 
is this?

More details on Slides 58-59!



Data

1 month

REST API

Snowball sampling over 
mentioned / retweeted users

All tweets between
19th June 2015 – 19th July 2015

200 tweets

Last 200 tweets 
of collected users

Interactions Follows

𝑢 has a link to 𝑣
if 𝑢 retweets, mentions 𝑣

Implicit network Explicit network

𝑢 has a link to 𝑣
if 𝑢 follows 𝑣

Pre-existing dataset

Facebook

Union of 10 ego-networks



Methodology

 Split:

 Hyperparameter selection: grid search (nDCG@10) 

 Evaluate using IR metrics on test: nDCG@10, MAP@10

All Links

Input Test judgments

Training Validation

Evaluation

Parameter tuning / 
training



Dataset statistics

Twitter 1-month Twitter 200-tweets
Facebook

Interactions Follows Interactions Follows

Users 9,528 9,770 9,985 9,964 4,039

Input edges 170,425 645,022 104,866 427,568 56,466

Test edges 54,335 81,110 21,598 98,519 17,643

Directed ✘

Weighted ✘ ✘ ✘

Split type Temporal Temporal Temporal Temporal Random

Density 0.0018 0.0067 0.0013 0.0048 0.0087



Algorithms

• IR models: 
• Probability ranking principle: BM25, BIR, ExtremeBM25

• Language models: Query likelihood (QLJM, QLD, QLL)

• Divergence from randomness: PL2, DFRee, DFReeKLIM, DLH, DPH

• Vector space model (VSM)

• General collaborative filtering
• User-based / Item-based kNN (cosine similarity)

• Implicit matrix factorization (iMF)

• Specific approaches
• Friends of friends: Adamic-Adar, MCN, Jaccard, cosine similarity

• Random walks: Personalized PageRank, Money,…

• Path-based: Local Path Index, Katz…

• Sanity check: Random and most popular



Results (nDCG@10) – 200-tweets dataset
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Adamic-Adar and MCN are 
competitive

Heavily normalized models 
(cosine, Jaccard) are not

Collaborative models are 
very effective (specially iMF, 

best in 3/5 datasets)

IR models can be effective!
BM25 always in top 5 

models, and best in 200-
tweets interactions

But not always… Vector 
Space Model doesn’t 

do well

Other models are very 
graph-dependent 



Can we do better?

What if we try the same with IR models?
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• User-based and Item-based kNN used cosine similarity
• Cosine similarity was also a standalone model

Cosine similarity 
improves when used as a 

similarity function!

More details on how on slide 60!
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User-based kNN
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Best baseline

𝑥 = 𝑦 𝑥 = 𝑦
𝑥 = 𝑦

User-based kNN + IR similarity is very effective

But still struggles to beat iMF



Can we do even better?

• Idea: Learning to rank (Liu 2007)

• Supervised machine learning models

• Very effective in IR

• How does it work?

• Sample candidates

• Generate features for each target-candidate user pair

• Generate recommendation ranking



Our experiments

• LETOR algorithm: LambdaMART (Burges 2010, Ganjissafar et al. 2011)

• Features: Scores of contact recommendation methods

• IR models

• Friends of friends (FOAF) approaches

• User-based / Item-based kNN + IR / FOAF

• Sample suitable candidates: use IR models



Results (nDCG@10)

LambdaMART improves best recommendation baselines
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Conclusions

• We can use IR models as contact recommendation algorithms

• Direct IR models are both effective and efficient (BM25)

• IR-based models are better as neighborhood selectors for kNN

• Learning to rank techniques improve the accuracy of best state of the art algorithms

• IR models are effective in three different roles in contact recommendation
• Direct recommenders

• Neighborhood selectors in kNN

• Samplers and features in learning to rank





Beyond accuracy

• Users in the network are not isolated

• A few links can cause global effects

• Different links – different effects

• Contact recommendation

• 500 million new links/month on Twitter (as of 2015)

• Potential to drive network evolution



Accuracy

• Fundamental goal of contact 
recommendation

• Increase network density

• Limitations:

• Local perspective: average over 
isolated users

• Narrow perspective: one-
dimensional utility



Effects on network structure

Original network

Algorithm 1 Algorithm 2 Algorithm 3



Goals

Define suitable metrics for measuring the effects of contact 
recommendation beyond accuracy.

Determine their meaning for the users in the network.



How to measure?

User Score

𝑢2 0.9

𝑢3 0.8

𝑢4 0.1

𝑢1

𝑢2

𝑢3 𝑢4

𝑢5
Structural

metricRecommendation
ranking



Potentially relevant structural features

• Structural diversity

• Source of novel information.

• Enrichment of the information flow.

• Related to the notion of weak tie (Granovetter, 1978)

• Strength of a tie

• Measures the involvement of users in the tie.

• Strong ties: family, close friends.

• Weak ties: people you meet in conferences, 
shopkeepers.

• In the network structure: non-redundant links
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Weak links: local notions

• Consider the direct environment of the link.

• Triadic closure: minimum unit of structural redundancy.

• Metric: clustering coefficient complement.

   Measures the proportion of non-redundant triads in the network.

B

A

C B

A

C

a) Non-redundant triad b) Redundant triad



Weak ties: global notions

• Weak ties: links between communities (De Meo et al. 2012)
• Tightly connected groups of nodes

• Few connections outside the group

• Modularity complement (MC): number of weak ties
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Weak ties: global notions (II)

• Community edge Gini complement (CEGC)

• New metric

• Distribution of weak links between pairs of communities

• Based on the Gini index

Weak-link redundancy Weak-link diversity



Effect of different recommenders

What do these numbers really mean 
for the network?

Algorithm nDCG@10
Clustering 
coefficient

Modularity
Community 

Gini

iMF 0.139 0.902 0.155 0.045

BM25 0.104 0.878 0.150 0.041

Adamic-Adar 0.098 0.882 0.149 0.041

MCN 0.092 0.879 0.145 0.040

Pers. PageRank 0.100 0.915 0.182 0.054

Popularity 0.057 0.924 0.295 0.061

Random 0.001 0.952 0.280 0.091

Original network - 0.944 0.146 0.039



Filter bubbles

• We analyze the potential of weak ties on reducing filter bubbles

(Pariser 2011)



Diffusion experiment

• Hypothesis

• Experiment on interaction networks

1. Start with a baseline: Implicit MF / BM25

2. Apply gradual rerankers for optimizing a metric

3. Extend the network with top 𝑘 recommended links

4. Run propagation of (real) tweets through the network

5. Measure diffusion properties (novelty & diversity) 

The more structurally diverse the recommendation is, 
the more diverse and novel the information flow through
the network will be.



Diffusion simulation

Simulate real information diffusion:
• Users spread their own tweets to their followers
• Users read everything that appears in their timeline
• Users retweet every tweet that they retweeted in real life

Evaluation: Information novelty and diversity
Measured in terms of hashtags (as topical information)

• Novelty:
• Proportion of the hashtags unknown to the users.
• Known hashtags: hashtags in their original tweets.

• Diversity
• How evenly are hashtags propagated over the population
• Complement of the Gini index



Results
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Conclusions

• Accuracy is a partial perspective

• We propose evaluation perspectives beyond accuracy

• Global network effects beyond (averaged) isolated user gains

• New metrics elaborating on weak ties

• Enhancing the number of weak ties improves novelty & diversity 
of the information arriving to the users



Conclusions

• Accuracy is a partial perspective

• We propose evaluation perspectives beyond accuracy

• Global network effects beyond (averaged) isolated user gains

• New metrics elaborating on weak ties

• Enhancing the number of weak ties improves novelty & diversity 
of the information arriving to the users





Summary

• We have explored two problems in contact recommendation

• Definition of new models by adapting them from IR

• Definition of new metrics for evaluating contact recommendation

• IR models represent effective approaches for the task

• Enhancing the number of weak ties improves novelty & diversity 
of the information arriving to the users

• Do you want to try this?



Questions?
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Want to know more?

J. Sanz-Cruzado. Contact recommendation in social networks: algorithmic models, 
diversity and network evolution. 2021. PhD thesis. Link

Algorithmic models:

• J. Sanz-Cruzado, P. Castells, C. Macdonald, I. Ounis. Effective Contact Recommendation in Social 
Networks by Adaptation of Information Retrieval Models. Information Processing & 
Management , 57 (5), 102285, September 2020. 

• J. Sanz-Cruzado, C. Macdonald, I. Ounis, P. Castells. Axiomatic Analysis of Contact 
Recommendation Methods in Social Networks: An IR Perspective. 42nd European Conference 
on Information Retrieval (ECIR 2020). Online, April 2020, pp. 157-190. 

• J. Sanz-Cruzado, P. Castells. Information Retrieval Models for Contact Recommendation in 
Social Networks. 41st European Conference on Information Retrieval (ECIR 2019). Cologne, 
Germany, April 2019, pp. 148-163. 
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https://javiersanzcruza.github.io/thesis
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Want to know more? (II)

Network diversity:

• J. Sanz-Cruzado, P. Castells. Enhancing Structural Diversity in Social Networks by 
Recommending Weak Ties.  12th ACM Conference on Recommender Systems (RecSys 2018), 
Vancouver, Canada, October 2018, pp. 233-241.

• J. Sanz-Cruzado, P. Castells. Beyond Accuracy in Link Prediction. 3rd Workshop on Social Media 
for Personalization and Search (SoMePeAS 2019) co-located with 41st European Conference on 
Information Retrieval (ECIR 2019). Cologne, Germany, April 2019, pp. 79-94.

• J. Sanz-Cruzado, S.M. Pepa, P. Castells. Structural Novelty and Diversity in Link Prediction. 9th 
International Workshop on Modeling Social Media (MSM 2018) co-located with The Web 
Conference 2018 (WWW 2018). Companion of The Web Conference 2018 . Lyon, France, April 
2018, pp. 1347-1351. 
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An example: BM25

Text IR:

𝑓𝑞 𝑑 = ෍

𝑡∈𝑑∩𝑞

𝑘 + 1 freq 𝑡, 𝑑

𝑘 1 − 𝑏 +
𝑏 𝑑

avg𝑑′ 𝑑
′ + freq 𝑡, 𝑑

RSJ 𝑡

RSJ 𝑤 = log
𝐷 − 𝐷𝑡 − 0.5

𝐷𝑡 − 0.5

Γ 𝑣 : candidate user

Γ 𝑢 : target user

𝑡 ∈ Γ 𝑢 ∩ Γ 𝑣 : neighbor user

𝒰: all users

Γ 𝑡 : 𝑣 containing 𝑡 in Γ 𝑣  

𝑤 𝑡, 𝑣 : edge weight

len 𝑣 = σ𝑥∈Γ 𝑣 𝑤 𝑥, 𝑣  

𝑑: document

𝑞: query

𝑡 ∈ 𝑞 ∩ 𝑑: term

𝐷: all documents

𝐷𝑡: documents containing 𝑡

freq 𝑡, 𝑑 : frequency of 𝑡 ∈ 𝑑

|𝑑|: document d length



An example: BM25

Text IR:

𝑓𝑞 𝑑 = ෍

𝑡∈𝑑∩𝑞

𝑘 + 1 freq 𝑡, 𝑑

𝑘 1 − 𝑏 +
𝑏 𝑑

avg𝑑′ 𝑑
′ + freq 𝑡, 𝑑

RSJ 𝑡

RSJ 𝑤 = log
𝐷 − 𝐷𝑡 − 0.5

𝐷𝑡 − 0.5

Contact recommendation:

𝑓𝑢 𝑣 = ෍

𝑡∈Γ 𝑢 ∩Γ 𝑣

𝑘 + 1 𝑤 𝑡, 𝑣

𝑘 1 − 𝑏 +
𝑏 ⋅ len 𝑣

avg𝑣′ len 𝑣′
+ 𝑤 𝑡, 𝑣

RSJ 𝑡

RSJ 𝑡 = log
𝒰 − Γ 𝑡 + 0.5

Γ 𝑡 + 0.5
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