

Accelerating Cross-Encoders in Biomedical Entity Linking

Javier Sanz-Cruzado

&

Jake Lever

WORLD CHANGING GLASGOW A WORLD TOP 100 UNIVERSITY

BioNLP @ ACL 2025, 1st August 2025

What is biomedical entity linking?

What is biomedical entity linking?

Biomedical entity linking matches mentions of biomedical concepts (diseases, chemicals) in text with unique entities within a knowledge base

Common architecture for entity linking

- Two stages
- Candidate generator
 - Inspects all entities
 - Get the top k more relevant entities $k \ll |\mathcal{E}|$
 - Computationally efficient
 - Maximize recall@k
 - Ex: n-grams entity linkers
- Reranker
 - Inspects the top candidates from first phase
 - Precise ranker
 - Maximize accuracy
 - Computationally expensive
 - Ex: cross-encoder

Cross-encoder reranker

- Transformer-based model (encoder-only model)
 - BERT
 - BiomedBERT
 - Longformer
 - ModernBERT
- Inputs:
 - Text containing a mention
 - A candidate entity
- Output:
 - $f_{m,d}(e)$: the score for the entity
- Rank entities by descending score

How does the cross-encoder work?

It receives a sentence following a template

Text [SEP] Mention [MASK] Entity name

- The mention is contained in the text
- The text here provides additional context
- The [MASK] token can take two values:
 - 1 if the entity corresponds to the mention
 - 0 otherwise
- Therefore, the score of the entity is the probability of the [MASK] token taking value 1

Problem with cross-encoders

Training and inference with cross-encoders is very slow

Example on MedMentions dataset

- Training a first-phase n-grams model takes half an hour
- Fastest cross-encoder reranker takes > 6 hours to train
- That's, at least, 12 times more!
- Similar observations can be observed on inference time.

Can we accelerate cross-encoder rerankers without harming effectiveness?

Let's review the cross-encoder working

Accelerating cross-encoders

Each (mention, candidate) pair is only processed once.

The same mention is being processed C times!

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

Both in training and inference

Idea: Can we accelerate training / inference by showing each text less times to the cross-encoder?

Each (mention, candidate) pair is only processed once.

The same mention is being processed *C* times!

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

Each (mention, candidate) pair is only processed once.

The same mention is being processed C times!

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

Each (mention, candidate) pair is only processed once.

The same mention is being processed *C* times!

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

While the cross encoder uses template for each candidate:

Text [SEP] Mention [MASK] Entity e name

Each (mention, candidate) pair is only processed once.

The same mention is being processed *C* times!

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

• The parallel cross-encoder receives a sentence using the following a template for each mention:

```
Text [SEP] Mention [MASK] Entity e_1 name [SEP] Mention [MASK] Entity e_2 name ... [SEP] Mention [MASK] Entity e_C name
```

• Therefore, the score of the entity e_i is the probability of its [MASK] token taking value 1

Each (mention, candidate) pair is only processed once.

The same mention is being processed once.

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

• The parallel cross-encoder receives a sentence using the following a template for each mention:

```
Text [SEP] Mention [MASK] Entity e_1 name [SEP] Mention [MASK] Entity e_2 name ... [SEP] Mention [MASK] Entity e_C name
```

• Therefore, the score of the entity e_i is the probability of its [MASK] token taking value 1

But, every sentence can have more than one mention!

Solution 2: Multi cross-encoder

Each (mention, candidate) pair is only processed once.

The same mention is only processed once

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

Solution 2: Multi cross-encoder

Each (mention, candidate) pair is only processed once.

The same mention is only processed once

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

Solution 2: Multi cross-encoder

Each (mention, candidate) pair is only processed once.

The same mention is only processed once

The same sentence text is being processed $C \times M$ times!

And the document has N different sentences!

- Use a similar trick to the parallel cross-encoder
- The new template is:

```
Text [SEP] Mention 1 [MASK] Entity e_{1,1} name [SEP] Mention 1 [MASK] Entity e_{1,2} name ... [SEP] Mention 1 [MASK] Entity e_{1,C} name ... [SEP] Mention M [MASK] Entity e_{M,1} name [SEP] Mention M [MASK] Entity e_{M,2} name ... [SEP] Mention M [MASK] Entity e_{M,C} name
```

• And, again, the score for each entity and mention is the probability of the [MASK] token being one

Solution 3: Document cross-encoder

Each (mention, candidate) pair is only processed once.

The same mention is only processed once

The same sentence text is only processed once

And the document has N different sentences!

- The previous trick can be further applied
- Instead of processing one sentence, we can process multiple at the same time.
- How? Concatenating the templates for a sentence using a [SEP] token
- We call this document cross-encoder
- Note: if each document is divided in passages, we can have an intermediate cross-encoder. We denote this as passage cross-encoder

Solution 3: Document cross-encoder

Each (mention, candidate) pair is only processed once.

The same mention is only processed once

The same sentence text is only processed once

The document is only processed once

- The previous trick can be further applied
- Instead of processing one sentence, we can process multiple at the same time.
- How? Concatenating the templates for a sentence using a [SEP] token
- We call this document cross-encoder
- Note: if each document is divided in passages, we can have an intermediate cross-encoder. We denote this as passage cross-encoder

Research questions

Research question 1

How does the parallelism of the cross-encoder affect the effectiveness of the model?

Research question 2

How does the parallelism of the cross-encoder affect the training and inference speeds?

Experimental setup

- We test our models on four biomedical datasets:
 - MedMentions: PubMed abstracts annotated with entities in UMLS 2017AA
 - NCBI Disease: PubMed abstract annotated with disease mentions of entities in the MEDIC ontology
 - NLM Chem: Full-text PubMed Central articles, with annotated mentions of chemical entities in MeSH 2021
 - BC5CDR: PubMed abstracts with chemical and disease annotations. Linked with MeSH 2015.

Algorithms

- First stage candidate retrieval: n-grams TF-IDF
 - 3-grams for MedMentions, 2-grams for the other datasets
 - Compute 5 candidates for each mention
- Second stage:
 - Baseline: base cross-encoder
 - Parallel cross-encoder
 - Multi cross-encoder
 - Document cross-encoder

Cross-encoder configurations

Backbone LMs: We use models with different context-window size

BiomedBERT: 512

Longformer: 4096

ModernBERT: 8192

- Early stopping: if F1 is not improved on the validation set after three epochs
- Learning rate: all cross-encoders use the same one (1e-6)
- Batch size: depends on backbone model (fit on a single 4090)
- Loss function: cross-entropy loss
- Hardware: 2 CPU, 16 GB RAM, 1 Nvidia RTX 4090 GPU

Metrics

Acc@1: is the top-ranked entity correct?

Training speed:

- How many training examples (mention, candidate) pairs can we process per second?
- Ensures fair comparison, as different models might run for different epochs.

Inference speed:

How many inference examples (mention, candidate) pairs can we process per second?

RQ1: Effectiveness (MedMentions)

Cross-encoders improve effectiveness of the first stage model

Adding more information reduces Acc@1 on MedMentions

But difference is small (between 0.54% and 3.42% loss)

RQ1: Effectiveness

Adding more (mention, entity) pairs to the cross-encoder has limited impact on accuracy.

All the proposed cross-encoders are reasonable entity linking rerankers

Different datasets can react differently to the parallelism of the cross-encoders.

RQ2: Training speed (MedMentions)

Parallel cross-encoders accelerate the training between 3.12 and 3.9 times

Multi cross-encoders accelerate the training between 9.3 and 29.93 times

Document cross-encoders accelerate the training between 14.88 and 36.97 times

Similar patterns are observed on other datasets

RQ2: Inference speed (MedMentions)

Parallel cross-encoders accelerate the inference between 3.75 and 4 times

Multi cross-encoders accelerate the inference between 15 and 22.18 times

Document cross-encoders accelerate the inference between 9.83 and 26.47 times

Similar patterns are observed on other datasets

RQ2: Limitations on speed improvements

ModernBERT document cross-encoder works slower than the ModernBERT multi cross-encoder. WHY?

- ModernBERT has a longer context window (8192 vs. 4096 of Longformer)
- Therefore, input strings for ModernBERT can be longer than 4096 characters.
- When this happens, training speed diminishes.
- Very lengthy input strings can hinder the efficiency of the transformer.
- Although it is still much faster than a base cross-encoder.

RQ2: Efficiency

Adding more (mention, entity) pairs to the cross-encoder greatly increases training speed.

Adding more (mention, entity) pairs to the cross-encoder greatly increases inference speed.

Very lengthy input sentences can hinder the efficiency of the models.

Conclusions

- We can accelerate cross-encoders by allowing them to classify multiple (mention, entity) pairs at once
 - As we add more information, training / inference speeds improve
 - Training speed: between 2.68 and 36.97 times faster
 - Inference speed: between 3.8 and 26.47 times faster
- Adding more information produces small effects on performance
 - Usually, parallel cross-encoders achieve slightly better performance
 - Document cross-encoders worsen base performance
 - Differences in a -3.42% to 2.76% differences
- We can have a major training/inference speed improvement at a small accuracy cost!

This research was funded by the U.S. National Cancer Institute (NCI), with grant number U24CA275783.

