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* Around 167,000 people die from cancer in
the UK per year

* Pandemics like Covid-19 have a large impact
on our lives

Understanding diseases and developing
effective treatments is fundamental for our
healthcare!

For this, it’s important to know what
people did before.

What treatments were tested
What genes / proteins are involved
How is a disease related to others

New articles

Keeping up with prior research is

becoming increasingly difficult!

Articles in PubMed Central

Millions
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Explore the clinical relevance of genes &
variants

ClinGen is a National Institutes of Health (NIH)-funded resource dedicated to building a central

resource that defines the clinical relevance of genes and variants for use in precision medicine and
research.
(Q Gene Symbol - | Enter a gene symbol or HGNC ID (Examples: ADNP, HGNC:15766) Search)

Curated Variants ~

Curated Genes -~

Gene-Disease Validity -  Dosage Sensitivity - Clinical Actionability -~

Statistics More - @ -

ClinGen is defining the clinical relevance of genes

and variants

Founded in 2013 by the National Human Genome Research Institute, ClinGen is a growing collaborative

effort, involving three grants, nine principal investigators and over 2,700 contributors from more than
72 countries. Below are a series of recent updates that ClinGen has been working on.

Used in research for precision medicine

Examples:
e ClinGen: Clinical Genome Resource
e CIVIC: Clinical Interpretation of Variants in
Cancer

Summarize information about
* Diseases
* Treatments
* (Gene variants
* Etc.

Information is usually manually annotated
from research papers

Natural language processing can

help!
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Varicella is a highly contagious viral infection that causes an acute
fever and blistered rash, mainly in children. Immunocompromised
patients infected with the virus need intravenous treatment with
the antiviral aciclovir.

Biomedical
documents

Entities Relations More complex
* Va-riceII.a * Varicella is an infection information
* Aciclovir * Varicella causes fever * Aciclovir treats varicella
* Fever * Aciclovir treats varicella via intravenous treatment
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“Varicella” is a highly contagious “viral infection” that causes an
acute “fever” and “blistered rash”, mainly in children.
“Immunocompromised patients” infected with the “virus” need
“intravenous treatment” with the “antiviral” “aciclovir”.

Biomedical
documents

.- ?
o . ) _- ¢ :
Varicella” -«zz--------=------ > Chickenpox
\* Varicella-Zoster Virus

Knowledge base
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“Varicella” is a highly contagious “viral infection” that causes an
acute “fever” and “blistered rash”, mainly in children.
“Immunocompromised patients” infected with the “virus” need
“intravenous treatment” with the “antiviral” “aciclovir”.

Biomedical
documents

@ Varicella philippiana
“ - »” :
Va r|Ce||a >% Chickenpox
Varicella-Zoster Virus

Knowledge base
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Biomedical entity linking matches mentions of biomedical
concepts (diseases, chemicals) in text with unique entities
within a knowledge base

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc pharetra elementum est, ut commodo tortor pharetra
vitae. Nunc sit amet mauris commodo, pulvinar dolor nec, facilisis ligula. In tortor nibh, egestas in viverra ut, congue
fringilla justo. Cras nisl tellus, dictum ut placerat in, consectetur ac nunc. Morbi sagittis, mi vitae tempus vestibulum,
nisi odio lobortis dui, eu cursus libero tortor lacinia orci. Nullam luctus sodales elit, eu suscipit purus sollicitudin ac.
Mauris sit amet augue pharetra, consequat lacus eget, consectetur risus. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia curae; Morbi varius ex vel uIIamcorper semper NuIIam id velit sit amet elit
posuere eleifend. Donec sit amet sapien in enim tincidunt consectef
iaculis tellus eleifend. Donec aliquam nisi sed diam vestibulum, id
rutrum congue quis in dui. Sed ut ligula ut eros finibus mollis lao
malesuada eleifend sed hendrerit felis. Integer dictum dolor id ma
sed suscipit ac, auctor nec ante. Curabitur bibendum auctor mollis. v
fringilla nec lorem auctor dictum. Phasellus viverra commodo risus. Suspendlsse fells urna, fauabus ac massa ut,
feugiat finibus nunc. Praesent egestas dolor vitae hendrerit pulvinar. Maecenas aliquet est vitae dolor euismod, vel
tempor nisl viverra. Nullam vel leo vitae augue tincidunt vulputate. Nam ultricies dui vitae mi tempus, eu faucibus
metus placerat. Fusce laoreet mattis diam sit amet bibendum. Mauris consectetur, neque ut bibendum faucibus,
libero eros consectetur eros, non viverra lectus eros ac lectus. Etiam gravida tellus a ante luctus, in hendrerit dolor

Entity
linker

vehicula.

Biomedical text

Knowledge base
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Selects a reduced set of potential entities Estimates probability of the mention
for a mention matching the entity

— ..
, Very fast Y Filters entities <@5 Accurate QE Ranks entities

D}y Slow
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* We compare:
e Afirst-stage candidate retrieval model
 With three cross-encoders (state-of-the-art rerankers)

e We use the same hardware

Far from what we might find

* Dataset: MedMentions
* Training data:
e 2,635 biomedical paper abstracts
e 211, 029 mentions
e Test data:
e 879 biomedical paper abstracts
e 70,405 mentions

on the complete PubMed!




SASANESM How slow are entity linking rerankers?

7 of Glasgow

Training time Inference time
Training a reranker takes [PRPRPL Applying a reranker is at 37rm 5s
at least 22 times more % least 11 times slower than %
than a candidate retriever! % the retriever! %
% = % 24m 0s
= / Py /
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E % g 14m 245 - %
0d 12h - % ~ 7m12s /
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Cross-encoder rerankers are very slow...

Can we make them faster without harming

performance?
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Mention 1 Candidate 1

Sentence 1 Mention 2 Candidate 2

Sentence 2 : .
Mention M Candidate C

.

Biomedical
documents

Each (mention, candidate) pair is only processed once.

Sentence N
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Sentence 1

T\ Sentence 2

Biomedical Sentence N
documents

Mention 1 Candidate 1

\

I

I

: I

Mention 2 | Candidate 2 :
I

I

I

I

Mention M Candidate C

The same mention is being processed C times!

Each (mention, candidate) pair is only processed once.
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Sentence 1

T\ Sentence 2

Biomedical Sentence N
documents

’——

Mention 1 Candidate 1 \:
|
Mention 2 Candidate 2 :
:
|
Mention M ,I

Each (mention, candidate) pair is only processed once.

The same mention is being processed C times!

The same sentence text is being processed C X M times!
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Mention 1 Candidate 1 \

Sentence 1 Mention 2 Candidate 2

Sentence 2

Mention M Candidate C

e o — —— —

Biomedical sentence N Each (mention, candidate) pair is only processed once.

documents \\ L . :
Smmmmmm - The same mention is being processed C times!
The same sentence text is being processed C X M times!

And the document has N different sentences!
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EEE—

Each (mention, candidate) pair is only processed once.

. - o R 1 R e .
The same mention is being processed C times! Both in training

The same sentence text is being processed C x M times! and inference

And the document has N different sentences!

Idea: What if, instead of showing one (mention, candidate) pair on
each call, we show several simultaneously?
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We build re-rankers where we provide different amounts of (mention, candidate) pairs to

process
A single (mention, entity) pair { Base cross-encoder ]
All candidates in a mention { Mention cross-encoder
J (Expectedly)

. . . faster models
All (mention, candidates) in a Sentence cross-encoder ]

sentence
All (mention, candidates) in a Document cross-encoder ]

document
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All rerankers are more
effective than the candidate
retriever, as expected

-k-Rerankers Baseﬁ
1 @ Candidate retriever

Variation in effectiveness is
small

But, as we add more
(mention, entity) pairs,
Mention trammg t.m.|e notably
diminishes

Training time (hours)

7
6
3)
4 -
3
2
1

° Document Sentence

Similar results were obtained on other
0.4 0.5 0.6 0.7 datasets and models, and also on

Accuracy inference speed
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Processing more (mention, entity) pairs simultaneously has the following effects
on entity linking cross-encoder rerankers

Small variations in accuracy

-3.42 to 2.76 % differences with base model .
We can have a major

Major improvements in training speed training / inference
2.68x — 36.97x faster training than base model speed boost at a small

accuracy cost!

Major improvements in inference speed
3.8x — 26.47x faster inference than base model

Our solutions are suitable for environments where speed is crucial
(or data is huge)
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Dr. Javier Sanz-Cruzado
Al4BioMed Group, University of Glasgow

javier.sanz-cruzadopuig@glasgow.ac.uk

JavierSanzCruza

“ Javiersanzcruza.bsky.social

https://www.linkedin.com/in/javier-sanz-
cruzado-puig/
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Each (mention, candidate) pair
is only processed once. fna(e)

The same mention is being T
processed C times!
Cross-encoder

The same sentence text is

being processed C X M times!

‘And the document has N

Candidate
retriever

Sentence
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Each (mention, candidate) pair . a(e) (e £ (e
is only processed once. ’ T ’ T , T

(

Cross-encoder

on on

The same sentence text is

being processed C X M times!

different sentences! . : :

‘And the document has N

|

Candidate
retriever
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Each (mention, candidate) pair
is only processed once.

* While the cross encoder uses template for each candidate:

Text [SEP] Mention [MASK] Entity e name

The same sentence text is

being processed C X M times!

'And the document has N
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* The mention cross-encoder receives a sentence using the

Each (mention, candidate) pair following a template for each mention:
is only processed once.

Text [SEP] Mention [MASK] Entity e; name

orocessed C times! [SEP] Mention [MASK] Entity e, name

The same sentence text is [SEP] Mention [MASK] Entity e name

being processed C X M times!

* Therefore, the score of the entity e; is the probability of its

'And the document has N
i [MASK] token taking value 1

different sentences!
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* The mention cross-encoder receives a sentence using the
Each (mention, candidate) pair following a template for each mention:

is only processed once.

Text [SEP] Mention [MASK] Entity e; name
The same mention is being [SEP] Mention [MASK] Entity e, name

processed once.

The same sentence text is [SEP] Mention [MASK] Entity e name
being processed C X M times!

* Therefore, the score of the entity e; is the probability of its

And the document has N ,
[MASK] token taking value 1

different sentences!

And so on for the other models
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