

Comparing the Impact of Financial Knowledge Graphs from Financial Reports and Wikidata in Asset Recommendation Lubingzhi Guo, Javier Sanz-Cruzado, Richard McCreadie

Fin-RecSys 2024

Motivation



- Financial Market Investors
 Goal: Earn money
 - Challenge: Identifying good assets is difficult and time consuming
- Asset Recommendation
 - Supporting tools to quickly identify assets likely to provide market-beating returns
 - Automatically rank financial assets based on past market information

Financial Asset Recommendation

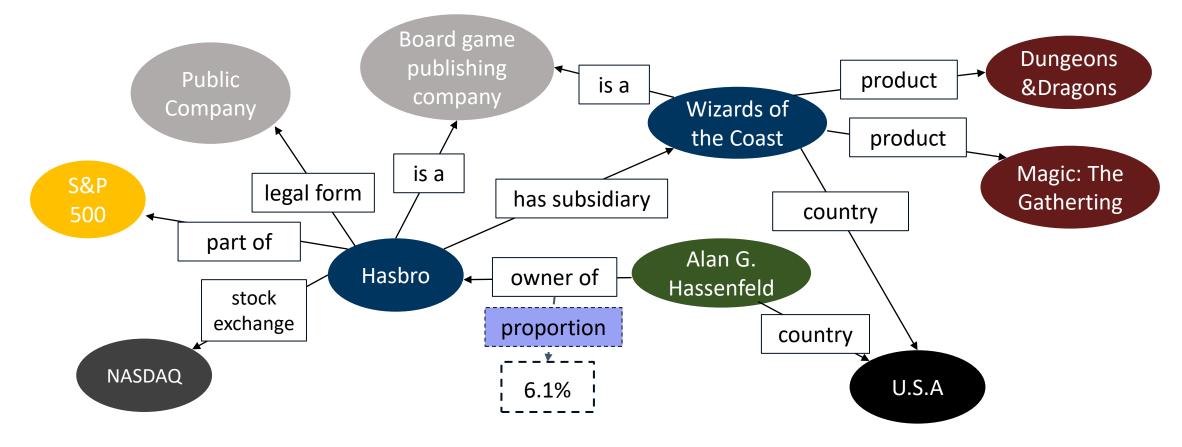
- The majority of prior solutions for FAR focus on either the market or news, e.g.
 - ➢ Past pricing data
 - ➢ Financial news articles
 - ➢ Social media
- However, important fundamental information about each individual company is often ignored, such as: _____
 - Company operations
 - > The people that manage or lead the company
 - ➢ Relationships with other companies
 - Product launch events
 - ➤ ... and much more

By leveraging these information, we hypothesize that the accuracy of profitability prediction can be increased

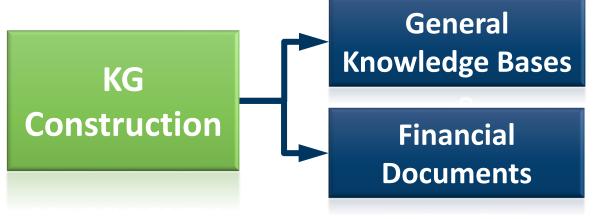
But how can we model this information if we can get it?

Financial Knowledge Graph

• A financial knowledge graph (KG) is a data structure that can be used to store such information, where nodes represent entities (e.g. companies, people), while edges represent relations between them (e.g. owner of).



Financial Knowledge Graph



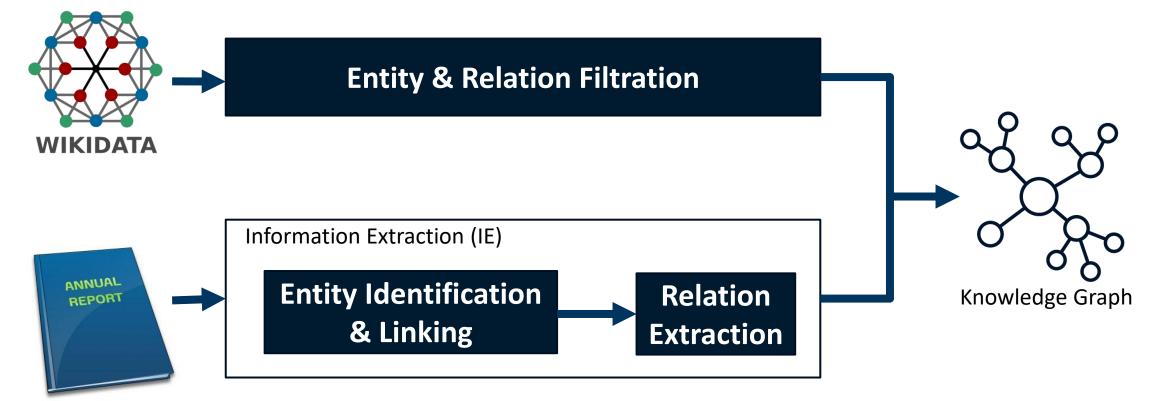
- Produced from structured databases like Wikidata
- Provides high-quality general information
- Produced from relevant news and financial reports
- Provides insights into financially-related data and trends

No prior works have quantitatively compared these two different strategies

- Graphs produced by different strategies are likely to benefit different types of assets being recommended
 - General knowledge bases with imbalanced coverage toward well-known/long standing companies
 - Financial documents cover more up-to-date and newsworthy information
- Our Contributions
 General Knowledge Base
 Crawl a financial KG from Wikidata
 Construct a financial KG from 10K reports
 - Compare the impact these two KGs have when predicting the future profitability of U.S. stocks.

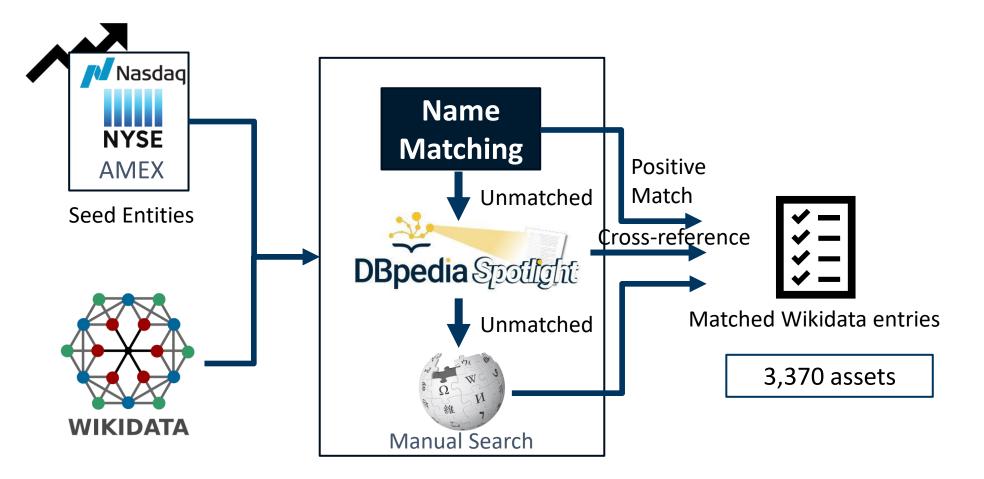
Financial Knowledge Graph Construction

Graph Generation

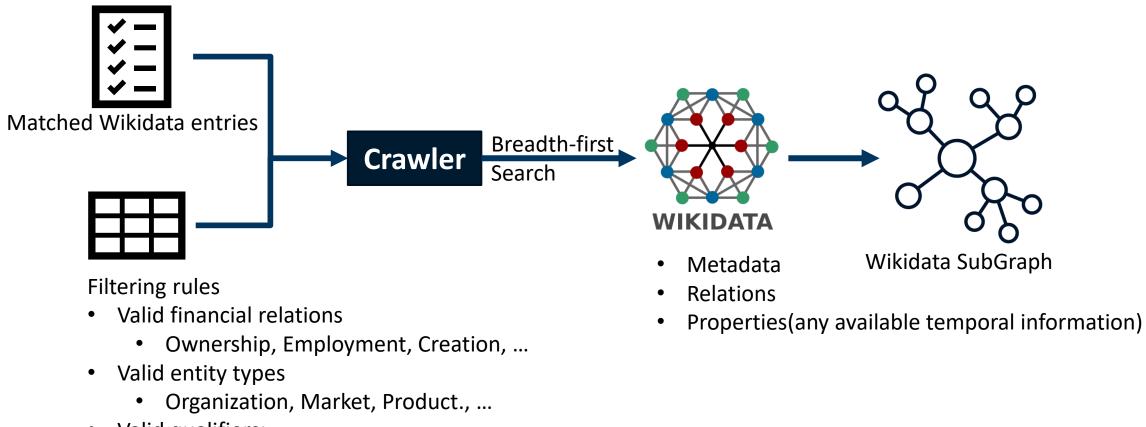


10K Reports

Seed Entity Matching



• Entity and Relation Filtration



- Valid qualifiers:
 - Time, Position, Location

KG Construction from 10K Reports

• Graph Definition

➢Hyper-relational fact: (Head Entity, Relation, Tail Entity, (Qualifier Label, Qualifier Value))

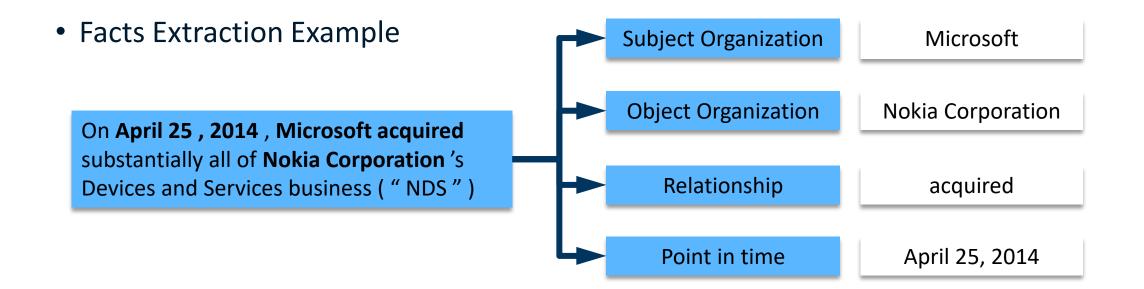
• Extract Information from Raw Text

Most studies focus on closed-domain relation extraction

- A limited set of predefined relations is not sufficient for represent complex relations in the financial documents
- >On the other hand, open-domain relation extraction identifies all possible relations from texts, extending beyond financial domain

10K Reports Graph

- Semi-open Hyper-relational Financial Facts Extraction
 - Bridge the closed-domain and open-domain methods
 - No specified relation tags needed
 - Provide guidelines to guide the model to identify business, transaction or personnel-related relationships



Adapt GoLLIE for the financial facts extraction task

Represents both input and output using python classes

Outperforms on zero-shot Information Extraction task across various domains

Allows the user to perform inferences with custom annotation schemas

[1] Oscar Sainz, Iker Garc´ıa-Ferrero, Rodrigo Agerri, Oier Lopez de Lacalle, German Rigau, and Eneko Agirre. GoLLIE: Annotation guidelines improve zero-shot information-extraction. In The 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, 2024. OpenReview

An Example of Business Event Schema **NFORMATION** TRIEVAL Group Guidelines are introduced as Event type introduced Event Argument Extraction docstrings as class name class BusinessEvent(Event): """A BusinessEvent refers to actions related to Organizations such as: creating, merging, acquiring, Trigger text span serves as cy or ending organizations (ind owning another orgo Representative candidates relation agencies).""" are introduced as comments mention: str """The text span that most clearly expresses the event. Such as: "started", "open", "create", Allows to match "closing", "merged" """ subject_organization: structure and subject_organization in the event. object_organization: Optional[str] = **None** # Receiver or secondary organization in the event. location: Optional[str] = **None** # Where the event takes place point_in_time: Optional[str] = None # Descriptive or vague moment of the event, not intended for direct comparison with start_time or end_time start_time: Optional[datetime] = **None** *# The precise starting datetime of the event* end_time: Optional[datetime] = **None** # The precise ending datetime of the event

- The output annotations are represented as a list of instances
- well-structured and easy to parse

```
# This is the text to analyze
text = "On April 25, 2014, Microsoft acquired substantially all of Nokia Corporation 's Devices
and Services business ( " NDS " )"
```

The annotation instances that take place in the sentence above are listed here

```
results = [
```

```
BusinessEvent(mention = "acquired",
```

```
subject_organization = "Microsoft",
object_organization = "Nokia Corporation",
point_in_time = "April 25, 2014")
```

10K Reports Graph

• Construction Pipeline 2 Q Preprocessing Postprocessing Instruct **10K Reports** Sentences Gollie Facts 10K Graph • Postprocessing Wikidata Entries **Real World Entity** Entity Span **Registered SEC** company name **Entity Linking Clustered Relations** Facts **Relation Span Relation Clustering**

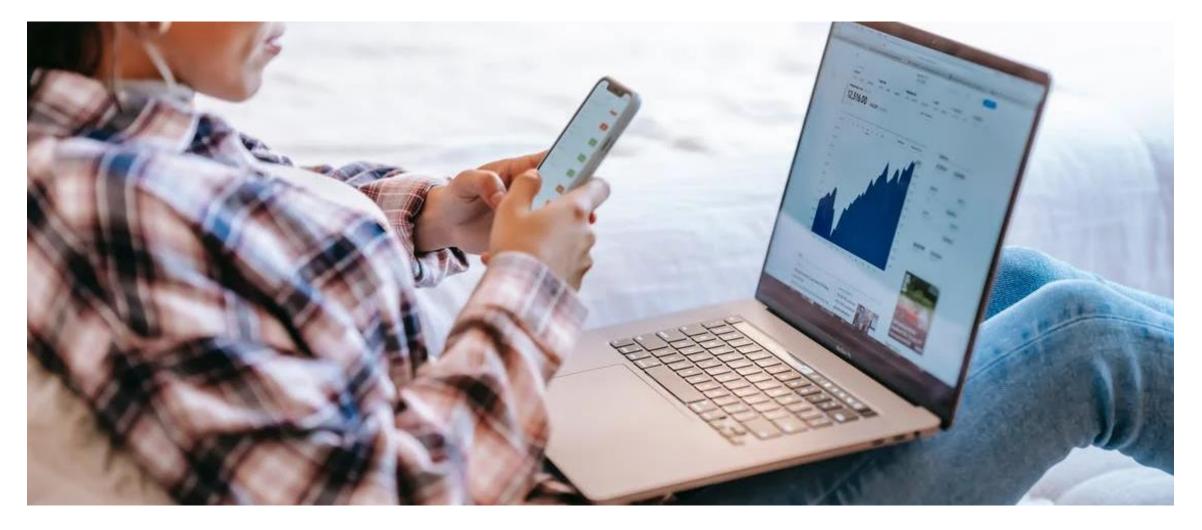
Graph Properties

Property	Wikidata	10K
Number of entities	102,739	8,380
Number of relation types	114	450
Number of links	457,758	36,973

- Filtered Wikidata Graph
 - Large
 - Reliable
 - Static
 - General

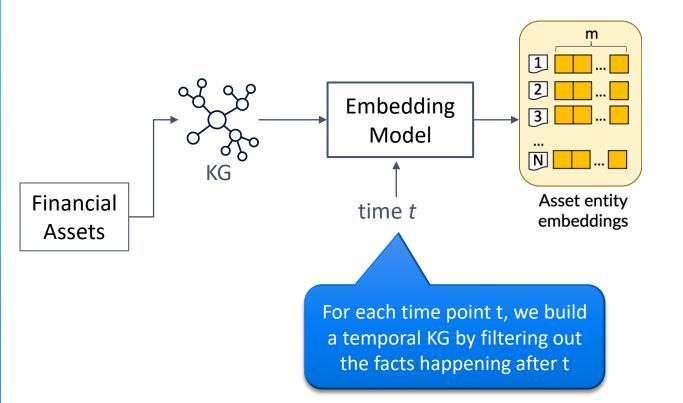
- Extracted 10K Graph
 - Small
 - Noisy
 - Up-to-date
 - Financially-related

Financial Asset Recommendation



Encode Knowledge Graphs

- Knowledge Graph Embedding (KGE)
 - > Aim to encode the information in the knowledge graph into a low dimensional space
 - > Entity embeddings are computed considering the related assets and relationships

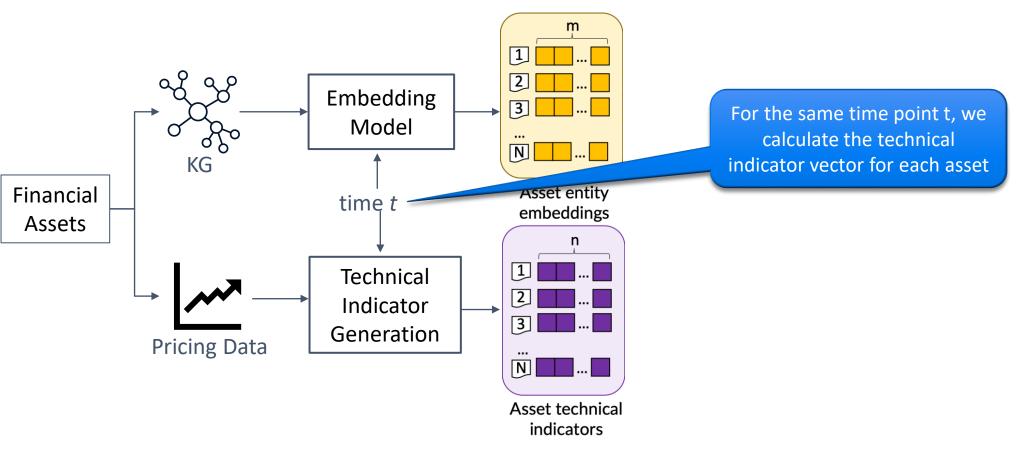


• KGE Models

Translation-based (Popular) TransE, TransH, TransR, RotateE Factorization-based RESCAL, HolE, TuckER Neural network-based (state-of-art) ConvE, RGCN

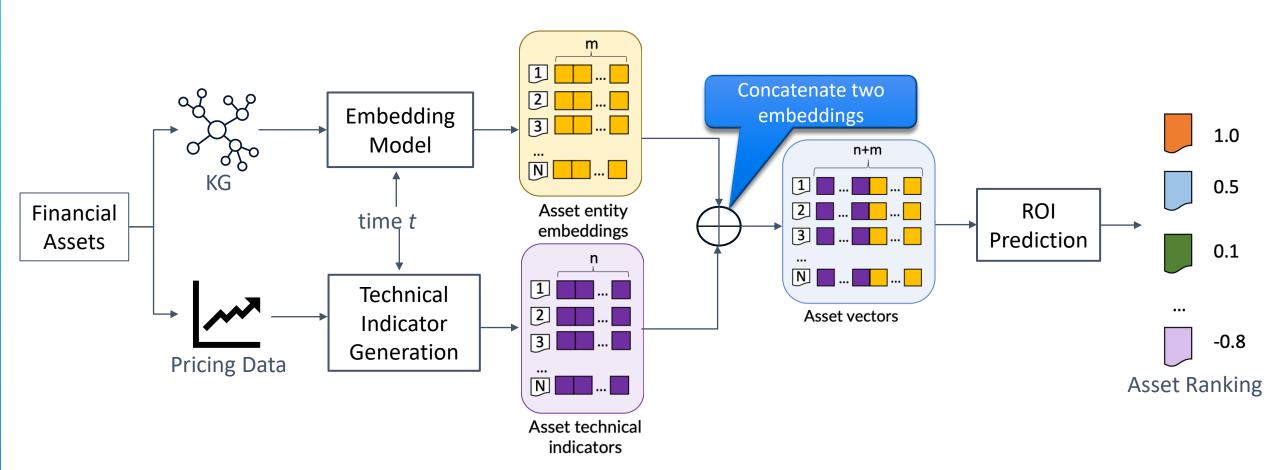
Incorporate Pricing Information

- Technical Indicators
 - Key performance indicators (KPIs) that encode some aspect of the past pricing information of a financial asset
 - Average price, Return on investment, Volatility



Asset Recommendation Pipeline

- Return on Investment Prediction
 - > Train a random forest regressor to predict the future profitability of the assets
 - > Rank assets by the estimated profitability in descending order



Experimental Setup

Irror_mod.use_x = True Irror_mod.use_y = False Operation == "MIRROR_Y Irror_mod.use_x = False Irror_mod.use_y = True Irror_mod.use_z = False Operation == "MIRROR_Z Irror_mod.use_y = False Irror_mod.use_y = False Irror_mod.use_z = True

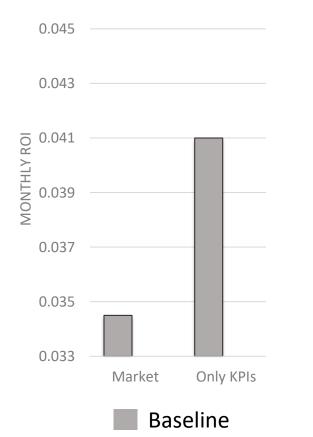
election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.action "Selected" + str(modifient irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_objected_obje

OPERATOR CLASSES -----

es. Operator):

Research Questions

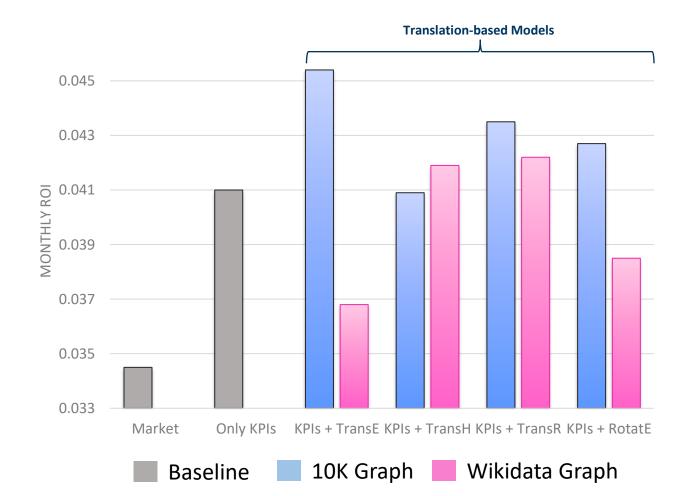
Training Regime



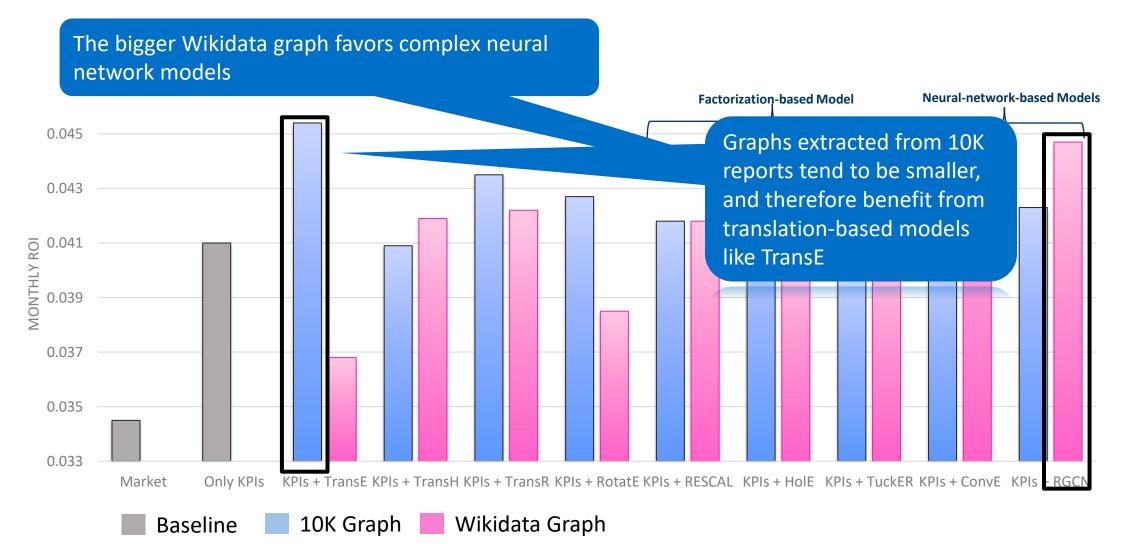
- Baselines
 - ➤ The market average

➢ Only KPIs

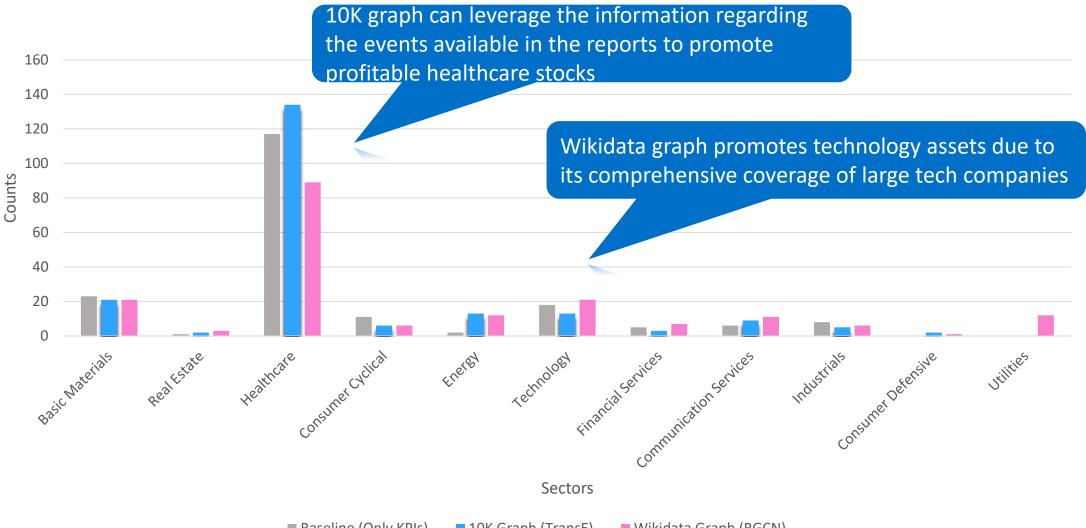
Models only use technical indicators to predict the future profitability of an asset



RQ1:Integrating KGE for Profitability Prediction



RQ2: How do recommended assets differ?



■ Baseline (Only KPIs) ■ 10K Graph (TransE) ■ Wikidata Graph (RGCN)

- Both graphs can improve the profitability of recommendations with respect to the method only using technical indicators by up-to 10%
- Should be careful to pick the embedding methods for incorporating knowledge graph
- Different construction methods can result in promoting different types of assets

Thanks & Question