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Introduction 
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Motivation 

§ Why is stock recommendation necessary?
– More and more individual investors are participating in the stock market.
– Irrational Investment Behavior of Individual Investors

• overconfidence, disposition effect, lottery preference, and herding(Ngoc, 2014)
• Due to these tendencies, their investment returns are generally low.

› The average investor significantly underperformed the S&P 500 over time (Murray, 2023)
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Motivation 
§ Why is stock recommendation necessary?

– Need for Assisting Individual Investors in Financial Decisions
• There are many excellent methods for portfolio performance

› Modern Portfolio Theory(MPT): Including stocks with low correlations to enhance 
returns relative to risks (Markowitz, 1952) -> portfolio diversification

› Find optimal portfolio between minimizing the risk and maximizing the expected return

• However, individual investors do not typically follow these methods.

– Individual investors tend to invest based on their own “preferences”
• Influences include: Psychological Factors, News, Peers, Emotion, Analyst recommendations, Global events, SNS, 

ESG, Risk aversion, Momentum …

– Need for a Stock Recommendation System!
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What should be considered?
1. Individual preference

– Individual investment behaviors are highly personal and varied (Sadi et al, 2011)
– “experience holding” (Welch, 2020) 

2. Portfolio performance
– Diversification effect (Markowitz, 1952)

• Including stocks with low correlations to enhance returns relative to risks

§ Tricky Trade-off !
– Pricing Models vs Transaction Models
– Customers are not always right (McCreadie et al., 2021)
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What should be considered?
§ 3. Temporal aspect

– Stock prices and the relationship between stocks
– User preferences continue to evolve accordingly
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Summary

§ We want to lead people towards sound investments

§ 1. Temporal collaborative signal
– Temporal Graph Network (TGN)

§ 2. Portfolio diversification
– Mean-Variance Efficient Sampling
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Related work  

UNIST Financial Engineering Lab. 8



Recommender Systems
§ Collaborative filtering

– Capturing collaborative signals and determine personalized item rankings
• Matrix Factorization (MF), Bayesian Personalized Ranking (BPR)

§ Stock recommendation
– Price predictions (Feng et al, 2019; Gao et al, 2021; Wang et al., 2022)

• Rank stocks by considering the temporal aspects of the stock market and predicting prices
• Limitation: ignores personal preferences

– Time-aware recommendations (Ghiye et al, 2023; Takayanagi et al, 2023)
• Recommend considering temporal preferences and features
• Limitation: did not consider diversification effect in portfolio management

– The 2-step method (Swezey and Charron, 2018)
• Rank stocks based on recommendation model, and then re-rank them using the modern 

portfolio theory method
• Limitation: heuristic approach

– Mean-variance efficient collaborative filtering (Chung et al, 2023)
• The first study to holistically model a Matrix Factorization (MF) model by incorporating a 

regularization term based on portfolio theory 
• Limitation: applicable only to static models, it does not account for temporal changes in 

stock prices or user preferences
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Dynamic Graph Learning
§ Static Graph Learning 

– GCN (Kipf and Welling, 2016)
– Popular in recommendation field

• NGCF (Wang et al., 2019), LightGCN (He et al., 2020), SGL (Wu et al., 2021)
› Exploit collaborative signal in high-order connectivities

§ Dynamic Graph Learning
– TGAT (Xu et al., 2020)

• A novel functional time encoding technique for the temporal graph attention

– TGN (Rossi et al., 2020)
• Based on TGAT, but nodes are initialized with memory embedding and 

temporal node feature

– Few works in recommendation field
• TGSRec (Fan et al., 2021), DGEL (Tang et al., 2023)

› Due to the utilization of time encoding without an explicit memory updater, there 
exists a limitation in capturing node history effectively
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Method  
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Preliminaries 

§ Problem Definition
– Users 𝑈 = {𝑢!, 𝑢", … , 𝑢|$|}
– Items 𝑉 = {𝑣!, 𝑣", … , 𝑣|%|}
– Time points 𝑇 = {𝑡!, 𝑡", … , 𝑡|&|}
– User portfolio in time 𝑡 = 𝑃𝑂',)
– If user 𝑢 buy the item 𝑣 in time 𝑡, 𝑦',*) = 1; Otherwise 𝑦',*) = 0
– The model aims to recommend the top-k items for each interaction!

UNIST Financial Engineering Lab. 12

User Item Time Portfolio

𝑢! 𝑖! 1

𝑢" 𝑖! 2

𝑢! 𝑖" 3 𝑖!

𝑢# 𝑖# 4

… … …

𝑢$ ? 10 𝑖" 𝑖#



Preliminaries 

§ Continuous time dynamic graph
– Graph 𝒢(𝑇) = 𝑉, 𝐸#
– Bipartite graph

• 𝑉	: User nodes, Item nodes 
– Edge features

• 𝐸& : tuple e = (𝑢, 𝑣, 𝑡, 𝑒'*)
• 𝑒'* ∶	Stock prices of an item for the past 30 days
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Model
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• Portfolio Temporal Graph Network Recommender(PfoTGNRec)



Model
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• Portfolio Temporal Graph Network Recommender(PfoTGNRec)



1. Dynamic embedding learning

§ Create node embeddings from dynamic graph
– TGN encoder
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1. Dynamic embedding learning
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§ Memory embedding 𝑠!(𝑡)
– 𝑠+(𝑡) = 𝐺𝑅𝑈 𝑚!(𝑡), 𝑠+ 𝑡,

• 𝑚$(𝑡) = 𝑠$ 𝑡% 𝑠& 𝑡% Δ𝑡 ∥ 𝐞$&
› Δ𝑡: time embedding
› 𝐞$& : edge feature

“Stores node history”



1. Dynamic embedding learning
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§ Graph embedding 𝑧! 𝑡
– 𝑧!(𝑡) = ∑"attn 𝑠!(𝑡), 𝑠"(𝑡)

• attn: Graph Attention Networks 
(GAT) 

“Learns collaborative signal”



2. Mean Variance Efficient Sampling
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§ Use MVECF(Chung et al., 2023) for diversification-enhancing sampling. 
– Positive & Negative sampling based on MVECF



2. Mean Variance Efficient Sampling
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2. Mean Variance Efficient Sampling
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2. Mean Variance Efficient Sampling
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§ Diversification score
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• 𝜇$=mean return of item 𝑖
• 𝜎$+=risk of item 𝑖

– Stocks with high returns and low risks will have high diversification scores.

Portfolio-based rank
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2. Mean Variance Efficient Sampling
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• In experiment,
20 candidate items
1 positive items
3 negative items

• 𝝀𝑴𝑽 : trade-off 
hyperparamter



3. BPR loss

§ BPR loss
– Positive and Negative 
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3. BPR loss
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§ BPR (Bayesian Personalized Ranking) loss
– ℒ#$% =

&
'
∑(),+,,,-)∈0 − log𝜎 𝑧)(𝑡)1𝑧+(𝑡) − 𝑧)(𝑡)1𝑧,(𝑡)

Positive Negative
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Experiment  
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Experiment 
§ Dataset

– Individual investor transaction dataset 
• Greece market (provided by Glasgow univ.)

– Period
• 1/2018 ~ 11/2022

– Preprocessing
• Buy orders
• Item filtering

› Stocks with missing value
› Stocks with unchanged prices for 30 consecutive days 

• Portfolio
› Based on the transaction history up until the day before

– Description
• 152,084 interactions
• 8,337 users
• 92 items
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Baselines

§ Static Recommender models
– Pop, BPR, LightGCN, SGL

§ Price-based models
– Return, Sharpe (non-personalized)

§ Stock recommendation models
– Two-step, MVECF

§ Dynamic Recommender models
– DyRep, Jodie, TGAT, TGN
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Evaluation 
§ Chronological split 

– According to interaction timestamps
– train-validation-test with 8:1:1

§ Interaction-based ranking strategy
– Final metric is averaged over test interactions
– For static baselines, recommendations are made consistently with the 

same item set ranked within train period throughout all test periods

§ Evaluation (Recommendation)
– Recommend the top k stocks with the highest scores
– Hit Ratio@k, NDCG (Normalized Discounted Cumulative Gain)@k

§ Evaluation (Investment)
– Recommend the top k stocks with the highest scores
– Return (𝑅) and Sharpe ratio (𝑆𝑅) of equal-weighted portfolio

• Difference: △ 𝑅 = 𝑅 − 𝑅$%$&, △ 𝑆𝑅 = 𝑆𝑅 − 𝑆𝑅$%$&
• Percentage improvement: 𝑃(𝑅) = 𝑃 𝑅 > 𝑅$%$& , 𝑃 𝑆𝑅 = 𝑃 𝑆𝑅 > 𝑆𝑅$%$&

– Out-of-sample: We use the stock prices for the 30 days following the 
interaction, thus incorporating uncertainty about the future
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Experiment  
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§ Comparison of Performance Considering Both User Preferences and 
Portfolio Performance(RQ1)
– To comprehensively evaluate the two metric, we selected two representative metrics
– NDCG@5, P(SR)@5



Experiment  
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§ Comparison of Performance Considering Both Recommendation and 
Portfolio Performance(RQ1)
– To provide a precise numerical comparison, we used a combined metric
– 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑀𝑒𝑡𝑟𝑖𝑐 = 	𝛼×𝑃 𝑆𝑅 @5 + 1 − 𝛼 ×𝑁𝐷𝐶𝐺@5	



Experiment 
§ Recommendation performance (RQ2)
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– Static and Dynamic Recommender Models: These models consistently outperform others in 
recommendation performance.

– Price-based and Existing Stock Recommender Models: These models exhibit lower 
recommendation performance.

– Our Model vs. TGN: While our model slightly trails TGN, we intentionally traded off some 
recommendation performance for enhanced diversification through MVECF sampling.

Price-based model

Dynamic Recommender

Stock Recommender

Static Recommender

Our Model



Price-based model

Dynamic Recommender

Stock Recommender

Static Recommender

Our Model

Experiment 
§ Portfolio performance (RQ3)
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– Our Model : Consistently shows superior performance across all metrics.
– Price-based Models: Show the lowest performance, highlighting the difficulty in predicting 

future prices.
– Stock Recommendation Models: Did not perform well in investment performance. This may be 

due to their inability to effectively handle the dynamic nature



Experiment 
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§ Hyperparameter study (RQ4)

– Six key hyperparameter: batch size, memory dimension, number of candidate items, 
number of negative items, 𝛾, 𝜆()
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Conclusion  
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Conclusion

§ A framework for stock recommender system
– 1. Captures the temporal dynamics of user behavior and stock 

market
– 2. Integrates portfolio diversification into recommendations

§ Experiments
– Our model demonstrated the best performance in weighted metrics 

that consider both recommendation and investment performance.
– Conducted an hyperparameter study.

§ Future works
– Incorporating static features of users and items as node features
– Accounting for various user behaviors in recommender system
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