Stock Recommendations for Individual Investors: A Temporal Graph Network Approach with Mean-Variance Efficient Sampling

Recommender Systems in Finance (Fin-RecSys)

Yejin Kim, Youngbin Lee, Yongjae Lee,

UNIST

Javier Sanz-Cruzado Puig, Richard McCreadie

University of Glasgow

Contents

Introduction

- Motivation
- Problem description

Related work

- Recommender system
- Dynamic graph learning

Method

- Preliminary
- 1. Dynamic graph learning
- 2. Mean-Variance Efficient Sampling
- 3. BPR Loss

Experiment

- Dataset
- Baselines
- Evaluation
- Comparison of Performance Considering Both Recommendation and Portfolio Performance(RQ1)
- Recommendation performance (RQ2)
- Portfolio performance (RQ3)
- Hyperparameter study (RQ4)
- Conclusion

Introduction

Motivation

Why is stock recommendation necessary?

- More and more individual investors are participating in the stock market.
- Irrational Investment Behavior of Individual Investors
 - overconfidence, disposition effect, lottery preference, and herding(Ngoc, 2014)
 - Due to these tendencies, their investment returns are generally low.
 - > The average investor significantly underperformed the S&P 500 over time (Murray, 2023)

Percentage of U.S. households owning stocks (Chang, 2023)

DGPHL EDES 30/10

Chang, A. C., Aladangady, A., Bricker, J., Goodman, S., Krimmel, J., Moore, K. B., ... & Windle, R. (2023). Changes in US Family Finances from 2019 to 2022. Ngoc, L. T. B. (2014). Behavior pattern of individual investors in stock market. *International Journal of Business and Management*, 9(1), 1-16.

UCIIST

Motivation

Why is stock recommendation necessary?

- Need for Assisting Individual Investors in Financial Decisions
 - There are many excellent methods for portfolio performance
 - Modern Portfolio Theory(MPT): Including stocks with low correlations to enhance returns relative to risks (Markowitz, 1952) -> portfolio diversification
 - > Find optimal portfolio between minimizing the risk and maximizing the expected return

$$\min_{\{w: \ \sum w=1, w \ge 0\}} \frac{\gamma}{2} w^T \Sigma w - \mu^T w$$

- However, individual investors do not typically follow these methods.
- Individual investors tend to invest based on their own "preferences"
 - Influences include: Psychological Factors, News, Peers, Emotion, Analyst recommendations, Global events, SNS, ESG, Risk aversion, Momentum ...
- Need for a Stock Recommendation System!

What should be considered?

1. Individual preference

- Individual investment behaviors are highly personal and varied (Sadi et al, 2011)
- "experience holding" (Welch, 2020)

2. Portfolio performance

- Diversification effect (Markowitz, 1952)
 - Including stocks with low correlations to enhance returns relative to risks

Tricky Trade-off !

- Pricing Models vs Transaction Models
- Customers are not always right (McCreadie et al., 2021)

Sadi, R., Ast, H. G., Rostami, M. R., Chollpour, A., & Chollpour, F. (2011). Behavioral finance: The explanation of investors' personality and perceptual biases effects on financial decisions. International journal of economics and finance, 3(5), 234-241.

Welch, I. (2020). The wisdom of the robinhood crowd (No. w27866). National Bureau of Economic Research Harry Markowitz, Portfolio selection*. The Journal of Finance. 7(1):77–91, 1952

McCreadie, R., Perakis, K., Srikrishna, M., Droukas, N., Pitsios, S., Prokopaki, G., ... & Ounis, I. (2021). Next-Generation Personalized Investment Recommendations. In Big Data and Artificial Intelligence in Digital Finance: Increasing Personalization and Trust in Digital Finance using Big Data and AI (pp. 171-198). Cham: Springer Internationa Publishing.

Chung, M., Lee, Y., & Kim, W. C. (2023). Mean-Variance Efficient Collaborative Filtering for Stock Recommendation. arXiv preprint arXiv:2306.06590.

What should be considered?

- 3. Temporal aspect
 - Stock prices and the relationship between stocks
 - User preferences continue to evolve accordingly

Figure 1: The importance of temproal aspects in stock recommender systems. (A) Various features of stocks would be different based on the timing of recommendations. (B) Contrasting behaviors between user A, who engages in short-term trading, and user B, who holds stocks for a long period.

We want to lead people towards sound investments

I. Temporal collaborative signal

Temporal Graph Network (TGN)

2. Portfolio diversification

– Mean-Variance Efficient Sampling

Related work

Recommender Systems

Collaborative filtering

- Capturing collaborative signals and determine personalized item rankings
 - Matrix Factorization (MF), Bayesian Personalized Ranking (BPR)

Stock recommendation

- Price predictions (Feng et al, 2019; Gao et al, 2021; Wang et al., 2022)
 - Rank stocks by considering the temporal aspects of the stock market and predicting prices
 - Limitation: ignores personal preferences
- Time-aware recommendations (Ghiye et al, 2023; Takayanagi et al, 2023)
 - Recommend considering temporal preferences and features
 - Limitation: did not consider diversification effect in portfolio management
- The 2-step method (Swezey and Charron, 2018)
 - Rank stocks based on recommendation model, and then re-rank them using the modern portfolio theory method
 - Limitation: heuristic approach
- Mean-variance efficient collaborative filtering (Chung et al, 2023)
 - The first study to holistically model a Matrix Factorization (MF) model by incorporating a regularization term based on portfolio theory
 - Limitation: applicable only to static models, it does not account for temporal changes in stock prices or user preferences

Janliang Gao, Xiaoting Ying, Cong Xu, Jianxin Wang, Shichao Zhang, and Zhao Li. Graph-based stock recommendation by time-aware relational attention network. ACM Transactions on Knowledge Discovery from Data (TKDD), 16(1):1-21, 2021. Changhial Wang, Hu Liang, Bo Wang, Xiaoxu Cui, and Yuwei Xu. Mg-conv: A spatiotemporal multi-rgndb convolutional neural network for stock market index tred prediction. Computers and Electricat Engineering, 103108285, 2022.

Chung, M., Lee, Y., & Kim, W. C. (2023). Mean-Variance Efficient Collaborative Filtering for Stock Recommendation. arXiv preprint arXiv:2306.06590

Gao, J., Ying, X., Xu, C., Wang, J., Zhang, S., & Li, Z. (2021). Graph-based stock recommendation by time-aware relational attention network. ACM Transactions on Knowledge Discovery from Data (TKDD), 16(1), 1-21.

Oriengian many, nut leading, or many, additional and any and the second and any and the second a

Takayanagi, T., Chen, C. C., & Izumi, K. (2023). Personalized Dynamic Recommender System for Investors.

Swezey, R. M., & Charron, B. (2018, September), Large-scale recommendation for portfolio optimization. In Proceedings of the 12th ACM Conference on Recommender Systems (pp. 382-386).

Dynamic Graph Learning

Static Graph Learning

- GCN (Kipf and Welling, 2016)
- Popular in recommendation field
 - NGCF (Wang et al., 2019), LightGCN (He et al., 2020), SGL (Wu et al., 2021)
 - > Exploit collaborative signal in high-order connectivities

Dynamic Graph Learning

- TGAT (Xu et al., 2020)
 - A novel functional time encoding technique for the temporal graph attention
- TGN (Rossi et al., 2020)
 - Based on TGAT, but nodes are initialized with memory embedding and temporal node feature
- Few works in recommendation field
 - TGSRec (Fan et al., 2021), DGEL (Tang et al., 2023)
 - > Due to the utilization of time encoding without an explicit memory updater, there exists a limitation in capturing node history effectively

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019), July). Neural apph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 165-174). He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2014), Linghters: Simplifying and powering areah convolution network for recommendation. In Proceedings of the 43nd International ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648).

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30. Rossi, E., Chamberlain, B., Frasca, F., Evnard, D., Monti, F., & Bronstein, M. (2020). Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637.

Food standard standard

ran, z., bu, z., zhing, J., Ading, L., & Li, F. S. (2021, Volume): Commodus-time sequence incommentation in importagraphic catacolaries transformed tr

.³ Method

Preliminaries

Problem Definition

- Users $U = \{u_1, u_2, \dots, u_{|U|}\}$
- Items $V = \{v_1, v_2, \dots, v_{|V|}\}$
- Time points $T = \{t_1, t_2, \dots, t_{|T|}\}$
- User portfolio in time $t = PO_{u,t}$
- If user u buy the item v in time t, $y_{u,v}^t = 1$; Otherwise $y_{u,v}^t = 0$
- The model aims to recommend the top-k items for each interaction!

User	ltem	Time		Portfolio	
<i>u</i> ₁	i ₁	1			
<i>u</i> ₂	i ₁	2			
<i>u</i> ₁	i ₂	3	<i>i</i> ₁		
<i>u</i> ₃	i ₃	4			
<i>u</i> 9	?	10	<i>i</i> ₂	i ₃	

Preliminaries

Continuous time dynamic graph

- Graph $\mathcal{G}(T) = \{V, E_T\}$
- Bipartite graph
 - *V* : User nodes, Item nodes
- Edge features
 - E_T : tuple e = (u, v, t, e_{uv})
 - e_{uv} : Stock prices of an item for the past 30 days

Portfolio Temporal Graph Network Recommender(PfoTGNRec)

Portfolio Temporal Graph Network Recommender(PfoTGNRec)

1. Dynamic embedding learning

Create node embeddings from dynamic graph

- TGN encoder

1. Dynamic embedding learning

Memory embedding s_i(t)

$$-s_i(t) = GRU(m_i(t), s_i(t^-))$$

•
$$m_i(t) = s_i(t^-) ||s_j(t^-)|| \Delta t || \mathbf{e}_{ij}$$

- > Δt : time embedding
- \rightarrow **e**_{*ij*}: edge feature

"Stores node history"

UC)is:C

1. Dynamic embedding learning

• Graph embedding $z_i(t)$

$$-z_i(t) = \sum_j \operatorname{attn}(s_i(t), s_j(t))$$

"Learns collaborative signal"

 attn: Graph Attention Networks (GAT)

- Use MVECF(Chung et al., 2023) for diversification-enhancing sampling.
 - Positive & Negative sampling based on MVECF

UNIST

Diversification score

$$- y_{ui}^{MV} = \left(\frac{\mu_i}{\gamma} - \frac{1}{2}\sum_{j:j\neq i} \frac{1}{|y_u|}\sigma_{ij}\right) / \sigma_i^2$$

- μ_i =mean return of item *i*
- σ_i^2 =risk of item *i*
- Stocks with high returns and low risks will have high diversification scores.

UC)IS T

3. BPR loss

BPR loss

8

Positive and Negative

<u></u>

BPR (Bayesian Personalized Ranking) loss

$$- \mathcal{L}_{BPR} = \frac{1}{N} \sum_{(u,p,n,t) \in D} -\log \sigma \left(z_u(t)^T z_p(t) - z_u(t)^T z_n(t) \right)$$

.4 Experiment

Experiment

Dataset

- Individual investor transaction dataset
 - Greece market (provided by Glasgow univ.)
- Period
 - 1/2018 ~ 11/2022
- Preprocessing
 - Buy orders
 - Item filtering
 - > Stocks with missing value
 - > Stocks with unchanged prices for 30 consecutive days
 - Portfolio
 - > Based on the transaction history up until the day before
- Description
 - 152,084 interactions
 - 8,337 users
 - 92 items

Baselines

Static Recommender models

- Pop, BPR, LightGCN, SGL

Price-based models

- Return, Sharpe (non-personalized)
- Stock recommendation models
 - Two-step, MVECF

Dynamic Recommender models

– DyRep, Jodie, TGAT, TGN

Evaluation

Chronological split

- According to interaction timestamps
- train-validation-test with 8:1:1

8 1 1

Interaction-based ranking strategy

- Final metric is averaged over test interactions
- For static baselines, recommendations are made consistently with the same item set ranked within train period throughout all test periods

Evaluation (Recommendation)

- Recommend the top k stocks with the highest scores
- Hit Ratio@k, NDCG (Normalized Discounted Cumulative Gain)@k

Evaluation (Investment)

- Recommend the top k stocks with the highest scores
- Return (R) and Sharpe ratio (SR) of equal-weighted portfolio
 - Difference: $\triangle R = R R_{\text{init}}, \triangle SR = SR SR_{\text{init}}$
 - Percentage improvement: $P(R) = P(R > R_{init}), P(SR) = P(SR > SR_{init})$
- Out-of-sample: We use the stock prices for the 30 days following the interaction, thus incorporating uncertainty about the future

Experiment

- Comparison of Performance Considering Both User Preferences and Portfolio Performance(RQ1)
 - To comprehensively evaluate the two metric, we selected two representative metrics
 - NDCG@5, P(SR)@5

Experiment

 Comparison of Performance Considering Both Recommendation and Portfolio Performance(RQ1)

- To provide a precise numerical comparison, we used a combined metric
- Combined Metric = $\alpha \times P(SR)@5 + (1 \alpha) \times NDCG@5$

Recommendation performance (RQ2)

	Model	HR@3	HR@5	NDCG@3	NDCG@5	P(R)@3	P(R)@5	P(SR)@3	P(SR)@5	ΔR@3	ΔR@5	ΔSR@3	ΔSR@5
	Рор	0.1586	0.2787	0.1355	0.1845	0.5174	0.5479	0.5670	0.6193	-0.003	0.0106	0.1860	<u>0.3533</u>
Static Recommender	WMF	0.4654	0.5588	0.3797	0.4183	0.4561	0.4417	0.5228	0.5294	-0.0212	-0.0379	0.0374	0.0408
	BPR	<u>0.5635</u>	0.6538	0.4794	0.5166	0.5234	0.4970	0.5595	0.5594	0.0064	-0.0079	0.1499	0.1555
	LightGCN	0.5378	0.6399	0.4419	0.4841	0.5333	0.5041	0.5712	0.5660	0.0083	-0.0055	0.1664	0.1663
	SGL	0.5297	0.6054	0.4578	0.4888	0.5071	0.4912	0.5558	0.5531	-0.0003	-0.0223	0.1325	0.0908
Price-based model	Return	0.0389	0.0621	0.0274	0.0368	0.3065	0.3438	0.3403	0.3883	-0.1747	-0.1819	-0.5236	-0.4699
Thee-based model	Sharpe	0.0453	0.0665	0.0324	0.0411	0.4137	0.4174	0.4743	0.4667	-0.0832	-0.1011	-0.1269	-0.1362
Stack Pacammandar	MVECF	0.2170	0.2321	0.2025	0.2087	0.4286	0.4149	0.5081	0.5068	-0.0426	-0.0644	-0.0281	-0.0482
Stock Recommender	two-step	0.2767	0.3834	0.2193	0.2629	0.4479	0.4425	0.5526	0.5743	-0.0227	-0.0335	0.1457	0.1849
	DyRep	0.3047	0.4533	0.2243	0.2852	0.4581	0.4499	0.5383	0.5403	-0.0235	-0.034	0.0769	0.0919
Dynamic Pecommender	Jodie	0.4324	0.5757	0.3247	0.3838	0.5156	0.4924	0.5757	0.5824	0.0074	-0.0022	0.2186	0.2617
	TGAT	0.5138	0.6318	0.4100	0.4585	0.5826	0.5423	0.6129	0.6037	0.0460	0.0343	0.3178	0.3452
	TGN	0.5673	0.6809	0.4611	0.5079	0.5405	0.5107	0.5612	0.5506	0.0260	0.0075	0.1959	0.1899
Our Model	PfoTGNRec	0.5572	0.6674	0.4532	0.4986	<u>0.5652</u>	0.5434	0.6125	0.6147	0.0407	0.0349	0.3053	0.3649

- Static and Dynamic Recommender Models: These models consistently outperform others in recommendation performance.
- Price-based and Existing Stock Recommender Models: These models exhibit lower recommendation performance.
- Our Model vs. TGN: While our model slightly trails TGN, we intentionally traded off some recommendation performance for enhanced diversification through MVECF sampling.

Experiment

Portfolio performance (RQ3)

	Model	HR@3	HR@5	NDCG@3	NDCG@5	P(R)@3	P(R)@5	P(SR)@3	P(SR)@5	ΔR@3	ΔR@5	∆SR@3	ΔSR@5
	Рор	0.1586	0.2787	0.1355	0.1845	0.5174	0.5479	0.5670	0.6193	-0.003	0.0106	0.1860	0.3533
Static Recommender	WMF	0.4654	0.5588	0.3797	0.4183	0.4561	0.4417	0.5228	0.5294	-0.0212	-0.0379	0.0374	0.0408
	BPR	<u>0.5635</u>	0.6538	0.4794	0.5166	0.5234	0.4970	0.5595	0.5594	0.0064	-0.0079	0.1499	0.1555
	LightGCN	0.5378	0.6399	0.4419	0.4841	0.5333	0.5041	0.5712	0.5660	0.0083	-0.0055	0.1664	0.1663
	SGL	0.5297	0.6054	0.4578	0.4888	0.5071	0.4912	0.5558	0.5531	-0.0003	-0.0223	0.1325	0.0908
Drice based model	Return	0.0389	0.0621	0.0274	0.0368	0.3065	0.3438	0.3403	0.3883	-0.1747	-0.1819	-0.5236	-0.4699
Thee-based model	Sharpe	0.0453	0.0665	0.0324	0.0411	0.4137	0.4174	0.4743	0.4667	-0.0832	-0.1011	-0.1269	-0.1362
Stock Pacammandar	MVECF	0.2170	0.2321	0.2025	0.2087	0.4286	0.4149	0.5081	0.5068	-0.0426	-0.0644	-0.0281	-0.0482
Stock Recommender	two-step	0.2767	0.3834	0.2193	0.2629	0.4479	0.4425	0.5526	0.5743	-0.0227	-0.0335	0.1457	0.1849
	DyRep	0.3047	0.4533	0.2243	0.2852	0.4581	0.4499	0.5383	0.5403	-0.0235	-0.034	0.0769	0.0919
Dynamic Pecommender	Jodie	0.4324	0.5757	0.3247	0.3838	0.5156	0.4924	0.5757	0.5824	0.0074	-0.0022	0.2186	0.2617
	TGAT	0.5138	0.6318	0.4100	0.4585	0.5826	0.5423	0.6129	0.6037	0.0460	0.0343	0.3178	0.3452
	TGN	0.5673	0.6809	0.4611	<u>0.5079</u>	0.5405	0.5107	0.5612	0.5506	0.0260	0.0075	0.1959	0.1899
Our Model	PfoTGNRec	0.5572	0.6674	0.4532	0.4986	0.5652	0.5434	0.6125	<u>0.6147</u>	0.0407	0.0349	0.3053	0.3649

- **Our Model :** Consistently shows superior performance across all metrics.
- Price-based Models: Show the lowest performance, highlighting the difficulty in predicting future prices.
- Stock Recommendation Models: Did not perform well in investment performance. This may be due to their inability to effectively handle the dynamic nature

Hyperparameter study (RQ4)

- Six key hyperparameter: batch size, memory dimension, number of candidate items, number of negative items, γ , λ_{MV}

.⁶ Conclusion

Conclusion

A framework for stock recommender system

- 1. Captures the temporal dynamics of user behavior and stock market
- 2. Integrates portfolio diversification into recommendations

Experiments

- Our model demonstrated the best performance in weighted metrics that consider both recommendation and investment performance.
- Conducted an hyperparameter study.

Future works

- Incorporating static features of users and items as node features
- Accounting for various user behaviors in recommender system

Thank you for listening!

