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Financial asset recommendation (FAR)



Motivation

• Customer’s goal: Earn Money

• Achieve this by investing in Financial Assets

• Stocks

• Bonds

• Mutual funds

• Identifying good assets is difficult and time 
consuming 0
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Solution

Financial asset recommendation

Given a customer
• Automatically rank financial assets
• Ranking the best assets first

Use cases:
• Assistance of financial advisors
• Robo-advisors
• Automatic trading



Task

Investment History

Recommendation 
algorithm

Recommendation time
𝒕

Price time series

News

Social sentiment

Customer profile information

• Holding time (Δ𝑡)
• Risk aversion

News

Relations between assets
Global 
market

Customer

Assets

Asset ranking
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What makes FAR interesting?

01
Multi-objective

• Customers want to 
increase their money

• But we also need to adapt 
to their personal situation, 
preferences and needs
– Risk aversion
– Holding time
– Capacity
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02
Multi-modal

• Asset information
– Pricing time series
– Company fundamentals
– News

• Customer information
– Investor profile
– Past investments

Time dependent

• Asset valuations are 
dynamic.

• Multiple factors affect 
price changes.

• Even external events
– Pandemics, wars
– Governmental regulations
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Algorithms

Financial Asset 
Recommendation

(FAR)

Profitability-
based

Transaction 
based

Hybrid

• Asset dynamic asset information (prices, news)

• Non-personalized

• Uses what others have bought / sold

• Customer / asset similarity

• Combination of previous methods
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Evaluation



How do we evaluate?

Do our customers earn money?

• Aligned with customer interests

• Ignores past/future customer actual 
investments

• Metrics: Key performance indicators at a fixed 
time interval
• Return on investment (ROI)
• Net profit

Can we predict future investments?

• Investment transactions indicate strong 
preference

• Relevant transactions: acquisitions

• Ignores temporal pricing information

• Metrics: Recommender systems metrics

• Precision

• nDCG

Financial Asset 
Recommendation

Profitability
based

Transaction 
based

In both cases, metrics look at a fixed time interval

Expert based

10



How have these metrics have been used historically?
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• Evaluation is fragmented

• A majority of methods evaluate using 
profitability-based measures.
• Aligned with customer interest
• Transactions are difficult to get (proprietary 

datasets)

• Methods with transactions tend to 
evaluate using IR ranking measures.

• Expert-based evaluation is rarely used



How have these metrics have been used historically?
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Transaction-based evaluation and profitability-based evaluation 
have barely been compared!
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Is it correct to study only one perspective?

RQ1. Can we indistinctively use transaction-based and profitability-based metrics 
for evaluating financial asset recommendations?

Let’s assume that customers invest intelligently….
• Then, predicting their future investments would lead to high profitability
• And therefore, correlation between transaction and profitability-based metrics 

should be high

If correlation is high, we would only care about transaction-based metrics
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Theoretical analysis



Theoretical comparison

• We compute the correlation between any pair of metrics coming from these two 
families.

• Procedure:
1. Define what we mean by evaluation metric.
2. Define the properties of transaction-based metrics.
3. Define the properties of profitability-based metrics.
4. Compute their correlation.
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What is the theoretical correlation between profitability-based and transaction-
based metrics?



Evaluation time 
𝒕 + 𝚫𝐭

What is an evaluation metric?
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Transaction-based metrics

Can we predict the preferences of retail investors?

• Examples: P@k, nDCG@k

• Based on the concept of relevance
• Only based on customer actions

• We consider that an asset 𝑖 is relevant for a customer 𝑢 in the 𝑡, 𝑡 + Δ𝑡  period 
if and only if:
1. User 𝑢 has not invested in 𝑖 before time 𝑡.
2. User 𝑢 invests in 𝑖 after time 𝑡, and before 𝑡 + Δ𝑡.
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Properties of transaction-based metrics
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Profitability-based metrics

Do our customers earn money?

• Examples: Return on investment@k, Net profit@k

• Aligned with customer interests (earn money)
• Ignores the actual investments of customers

• We consider that an asset 𝑖 is profitable for a customer 𝑢 in the 𝑡, 𝑡 + Δ𝑡  period 
if and only if its price increases between in the 𝑡, 𝑡 + Δ𝑡 , i.e.:

price 𝑖, 𝑡 < price 𝑖, 𝑡 + Δ𝑡

• Profitability is graded: the bigger the difference, the more the profitability.
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Theoretical correlation between metrics

• Given a date, an investment horizon
• Correlation over all the possible customers and models is 0

• Transaction-based metrics do not necessarily lead to profit…

• …but they do not lead to losses either.

Transaction-based metrics and performance-based metrics 
are independent

Theorem

We cannot theoretically exchange both families of metrics.
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Questions?



Empirical analysis



Empirical analysis

Hey, we have already seen that metrics are not correlated, 
why do we need to perform an empirical analysis?

• Theorem studies all possible customers / algorithms.
• Real-world datasets only explore a few customers.
• Investors can be subject to biases.

• Popularity of the assets.
• Knowledge of financial advisors.
• Interests of financial institutions.

• Recommender systems limit their explorations following data.

We need to confirm our observations empirically
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Research questions

Can we indistinctively use transaction-based and profitability-based metrics 
for evaluating financial asset recommendations?

Which algorithms optimize transaction-based metrics?

Which algorithms optimize profitability-based metrics?

RQ1

RQ2

RQ3
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Dataset: FAR-Trans

J. Sanz-Cruzado, N. Droukas, R. McCreadie. FAR-Trans: An Investment Dataset for Financial Asset Recommendation. 
IJCAI-2024 Workshop on Recommender Systems in Finance (Fin-RecSys), Jeju, South Korea, August 2024.

• Greek market: stock, bonds, mutual funds
• Period: 1st January 2018 – 30th November 2022

• Combines:
• Time series data (pricing information)
• Customer investments

• Statistics:
• 806 unique assets (321 with investments)
• 29,090 unique customers
• 703,303 price time points
• 388,049 transactions (154,103 unique)
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Dataset split
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Dataset split
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• Total: 61 time points

• Length of test period: 6 months

• Starting date: 1st August 2019
• Ending date: 23rd November 2021

• Varying market conditions
• Including Covid-19 period
• And 2022 market downturn



Metrics

• Profitability-based: monthly return on investment (Monthly ROI@10)
• Relative increase of price w.r.t. the initial investment after some time Δ𝑡

• Initial price: price at recommendation time

• Final price: price at recommendation time + Δ𝑡

• Δ𝑡 = 6 months

• Transaction-based: nDCG@10
• Higher nDCG indicates our model predicts future customer investments

• Ranking-based IR/RecSys evaluation metric

• Relevant transactions

• New asset acquisitions (buys)

• Up to 6 months after recommendation
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Algorithms

• Profitability-based regression models
• Linear regression

• Random forest

• LightGBM

• Transaction-based models
• Not personalized: popularity-based

• Collaborative filtering: LightGCN, MF, UB kNN, association rule mining

• Demographic methods: UB kNN with customer information

• Hybrid: using as features all the previous models,
• LightGBM regression

• LightGBM learning to rank (LambdaMART)
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Results
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Results

Which algorithms optimize transaction-based metrics?RQ2

Which algorithms optimize profitability-based metrics?RQ3

• Personalized transaction-based models optimize nDCG@10
• Best model: LightGCN

• Not-personalized profitability prediction methods optimize monthly 
returns @ 10

• Best model: Random forest regression
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Comparison between metrics
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What is the empirical correlation between metrics?

• Pearson correlation over all customer, 
date, algorithm triplets: -0.13

• Correlation between metrics is 
negative!

• If we improve future investment 
prediction, that could lead to losses!

We cannot exchange both families 
of metrics.
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Factors affecting correlations



RQ4. What factors affect correlation between 
metrics?

Ability of customers to profit from market

Changes in market conditions

Customer investment holding time

1

2

3
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Ability of customers to profit from market

• Previous hypothesis
• If customers invest intelligently….

• Then, predicting their future investments would lead to high profitability

• And therefore, correlation between both evaluation metrics should be high

• But correlation is negative…

Are our customers effective investors?
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Do customers earn money?
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• Time horizon: Δ𝑡 = 6 months

• Overall: No
• Market  0.79% Monthly ROI
• Customers 0.18% Monthly ROI

• Over time: Depends on the chosen date

Then, is our initial hypothesis true?
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Hypothesis testing

• Simulation
• Create effective synthetic customers

• Substitute the real customers by them

• Re-run the experiments over them

• Synthetic customer procedure creation
1. Estimate number of customers

2. For each customer

a) Choose the number of assets on which to invest

b) Choose the time points of the investment

c) Choose the assets on which to invest

• Repeat the process 10 times
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Synthetic customer creation

1. Choose number of customers
• Same as in the real dataset: 29,090

 

2. Choose number of assets on which a customer invest
a) Mimick the distribution of the original data

b) We use a Gamma distribution Γ 𝑘, 𝜃

c) Choose randomly the number of investments 𝑛 ~ Γ 𝑘, 𝜃

3. Choose the time points of the investment
• Uniformly between January 1st 2018 and November 30th 2022

4. Choose the assets
a) Choose among the top-50 most profitable assets between

𝑡 and 𝑡 + Δt (Δt = 6 months)

b) Choose proportionally to ROI

FAR-Trans dataset ratings 
distribution
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Synthetic dataset statistics
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• The synthetic customers
• Always beat the market
• Always beat the real customers

Does this lead to positive 
correlation?
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Experimental results (Synthetic customers)
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• Pearson correlation over all customer, 
date, algorithm pairs: +0.13

• Correlation between metrics is 
positive!

What is the correlation between metrics in the synthetic dataset?

If customers are good investors, 
correlation is positive

However, our customers are not 
always good investors
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Changes in market conditions

42
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Correlation over time
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• Correlation changes notably over time
• Between -0.5 and 0.5!

• Computing correlation over multiple 
dates hides these variations!

• Therefore, recommendation time 
affects the correlation

What is causing that?
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What is the cause of the variation in correlation?
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Changes in market conditions

• Time affects correlation between metrics

• At different dates, we observe big variations.

• However, pure market conditions do not explain sign changes in correlation.

• Customer ability to beat the market does
• When customers beat the market, correlation is likely to be positive

• When customers do not, correlation is likely to be negative



Is six months a reasonable future time target?

• Only 9% customers hold their investments for 6 months or less.
• Investments captured by nDCG might not necessarily align with a 6 month investment horizon.

Customer investment horizon
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How do results change for different horizons?

• We repeat our experiments for shorter and longer investment horizons.

• New horizons: 1, 3, 6, 9, 12 months

• As we increase the investment horizon:
• Asset profitability changes.
• Transactions in the test set increase.

• How does this affect algorithms?
• Transaction-based algorithms: training data is the same for different 

horizons.
• Profitability-prediction algorithms: training examples are the same, but 

target changes.



Effectiveness (nDCG@10)
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• Transaction-based models
• As we increase the horizon, we just 

increase the test set.
• Therefore, algorithms are just capable of 

capturing further transactions.

• Profitability-based models
• Low nDCG@10 values
• Still not-personalized
• Rankings change when we modify 

horizon (target change)
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• Transaction-based models
• Still under-perform the market
• Exception: UB-kNN
• Values slightly change

• Profitability-based models
• Best ROI.
• Large variations over time.
• Random forest best overall (4 out of 5 

horizons).
• LightGBM best for 1 month.



Does the correlation change?
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Is that similarity consistent 
over time?



Analysis over time

• At the same date, correlation 
changes notably when we change 
investment horizon

• At one date, we might find positive 
correlation when in other is negative

• Why?
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Analysis over time
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Investment holding time

• Globally, correlation is not particularly affected by the investment horizon

• However, computing correlation under all metrics hides variations

• For a single date, investment horizon has a large effect on correlation!

• We need to consider this individual effects!

• We again, checked that, for every investment horizon, differences between customer and 
markets explain most of correlation changes



Conclusions



Conclusions

• We cannot use transaction-based metrics in exchange of profitability-based metrics.

• Theoretically, they are independent.

• Empirically, correlation is negative.

• Reasons:

• Customers underperform the market average.

• Customer effectiveness changes over time.

• And is affected by different investment horizons.

• Recommendations

• Don’t limit your evaluations to transaction-based metrics!

• Consider changing market conditions when testing financial recommenders.

• Customer strategies might confound our evaluation.



Questions?



What is the cause of the variation in correlation?
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