
Javier Sanz-Cruzado
Glasgow IR Away Day

December 12, 2022



Development

Javier Sanz-Cruzado Pablo Castells



Outline

1. Introduction to networks

2. What is RELISON?

3. Installation

4. How to use it

5. Future plans



Introduction 
to networks



The basics – Networks

• Two types of objects:
• Nodes

• Relations (connections 
between nodes)

• Mathematically modelled as 
graphs

• Networks are everywhere!



Networks are everywhere!

• Social networks (connecting people)
• Twitter

• Facebook

• LinkedIn

• Goodreads

• TikTok

• …



Networks are everywhere!

• Transport / energy networks



Networks are everywhere!
• Recommender systems

Last Christmas

The Grinch

Home Alone

Die Hard
Thriller

Family

Romance

Action

Fantasy

Comedy



Networks are everywhere!

Christmas

Holidays

Presents

Family

Friends

December

Christmas holidays 
presents

Is Christmas in 
December?

Presents for family 
and friends

• Search engine



Networks are everywhere!

• In summary, many things can be modelled as a network / 
graph

• So you might need some tool to:
• Create and manipulate networks

• Analyze the structure of those networks

• Predict future links

• Etc.

• RELISON fits that gap!



What is 
RELISON?



What is RELISON?

• RELISON: REcommending LInks in SOcial Networks

• Java library

• Focus:

• Link recommendation

• Effects over network structure



FAQ

• Is RELISON only useful for link recommendation? 

No! It offers much more! We’ll see in the next slide

• Is RELISON only useful for social networks?

No! You can use it over general networks

• Are you sure it is only available in Java?

Yes, as of now (version 1.0.0) it is only available in Java



Functionalities provided by RELISON

Network 
creation

Network 
edition

Network 
structural 
analysis

Community 
detection

Link 
recomm.

Link 
prediction

Information 
diffusion



RELISON useful links

OFFICIAL WEBSITE GITHUB DOCUMENTATION



CORE

LINKPRED

DIFFUSION

CONTENT

EXAMPLES

SNA

• Basic definitions
• Graph generators

• Social network analysis
• Community detection

• People recommendation
• Link prediction

• Simulation of information diffusion 
dynamics

• Indexing of user-generated contents

• Command line programs

R
E

L
IS

O
N



Installation



Installation

Two 
modes

Command 
line

RELISON-
Examples

Developer 
mode

Maven 
Central



Command line

• RELISON provides command line programs to execute 
multiple functionalities

• Limitations:
• Graphs must be read from .csv files

• Node types can only be integers

• Advantage: no need for code



How to use it?

• Step 1: Download the compiled JAR file

• Step 2: Execute program

curl –L https://github.com/ir-uam/RELISON/releases/download/v1.0.0-
maven/relison.jar --output relison.jar

java [VM Options] –jar relison.jar [PROGRAM_CODE] [arguments]

We’ll explore some of the 
programs during this 

presentation!



Developer mode

• Used for implementing new methods, metrics, etc.

• Recommendation: Maven
• RELISON is available in Maven Central since last month

• Add the dependency as:

• Where [module-name] is the name of the module to use

<dependency>

<groupId>io.github.ir-uam</groupId>

<artifactId>RELISON-[module-name]<artifactId>

<version>1.0.0</version>

</dependency>



Note about this tutorial

• For time constraints, we will focus here on command line 
programs

• If you want to use developer mode, refer to the 
documentation of the library.

• Would you be interested on a presentation like this for 
“developer mode”?



How to use it



Hands-on

• Do you want to try RELISON as we advance?



Network creation

CORE



Types of graphs supported

Simple (1)

Multigraph (>1)

Edge number 
between nodes

Edge weights Edge direction

Weighted

Unweighted

3.5 2

1-2 4

Directed

Undirected



Manually crafted networks

• Default format: tab separated .csv

Origin \t Destination \t Weight (opt) \t Type (opt)

• Example: type less weighted directed network

A B

C D

A B 1.0
A C 2.0
B D 1.5
C B 3.0

File:1

2 1.5
3.0



Automatically created random graphs

• Graph models
• Define the properties of a network

• Nodes and edges are created accordingly to a stochastic 
algorithm.

• In RELISON:
• Random Erdös networks

• Preferential attachment

• Watts-Strogatz

• Non-stochastic: complete graph, empty graph



Automatically created random graphs (II)

• The graphgen program

• Input:
• output_file: file on which to store the graph
• directed: true if the graph is directed, false otherwise
• num_nodes: the number of nodes
• algorithm_name: the name of the graph generation algorithm
• [parameters]: the parameters for the algorithm

• Output:
• A tab separated .csv file with the graph

graphgen output_file directed? num_nodes algorithm_name [parameters]



LINKPRED

Link recommendation & 
link prediction



Recommendation task

4 4 2 2 4

1 4 4 3

4 3 2 1 4

4 3 3 1

1 1 5 2

U
se

rs

Items

Rating matrix

0.
9
0.
7

0.
2

R
e

c
o

m
m

e
n

d
a
tio

n

4 4 2 2 4

1 4 4 3

4 3 ? 2 ? 1 4 ?

4 3 3 1

1 1 5 2



Link / People / Contact recommendation

U
se

rs
- 1 1

- 2

1 ? - ? 1

3 -

1 4 -

Items



Link / People / Contact recommendation

U
se

rs
- 1 1

- 2

1 ? - ? 1

3 -

1 4 -

Users

?

 Items = users

 Availability of social relationships

 Rating matrix = adjacency matrix



Importance of link recommendation

• Particular characteristics w.r.t. classic recommendation
• Development of new methods

• Use of social network analysis

• Creation of new links
• Main asset of networks

• Communication channels

• Source of information

• Increase engagement of users



Link / People / Contact recommendation

U
se

rs
- 1 1

- 2

1 ? - ? 1

3 -

1 4 -

Users

?

 Items = users

 Availability of social relationships

 Rating matrix = adjacency matrix



Link prediction

U
se

rs
- ? ? 1 1

? - ? 2 ?

1 ? - ? 1

? 3 ? - ?

1 ? ? 4 -

Users

?

 Which edges will appear in the network in the future?

 Classification problem

 Unique ranking for all possible links

?

?

?

?

?



Link recommendation vs. prediction

Link recommendation

• Social networks (mostly)

• Local ranking problem

Link prediction

• Any network

• Global ranking / classification

Link 
prediction 
methods

Link recommendation 
methods



Functionalities for link recommendation

Link recommendation

Network structure

Information diffusion

Algorithms

Evaluation

Accuracy

Novelty & Diversity

Effects on

Reranking



Algorithms

Trivial

Friends of friends

Path based

Random walk

Collaborative filtering

Content based

Learning to rank

Classifiers

Unsupervised Supervised

• Random
• Popularity

• MCN
• IR models

• Graph distance
• Katz similarity

• Personalized PageRank
• Money (Twitter)

• User / Item-based kNN
• Implicit MF

• Twittomender
• Centroid-based CB

• Random forest
• Linear regression

• LambdaMART

More than 50 
algorithms!



Evaluation metrics

• Accuracy: IR-based metrics
• Precision
• Recall
• nDCG
• MAP

• Diversity:
• Intra-list diversity
• ERR-IA
• Predicted Gini complement

• Novelty:
• Long tail novelty
• Unexpectedness
• Mean prediction distance

• Effects on networks: Later, on SNA section



How to use

• From command line: the recommendation program

• train / test: the training/test networks

• multigraph/directed/weighted: true/false if network is 
multigraph/directed/weighted

• selfloops: true if we want to read self-loops

• readtypes: true if edges have types and we want to read them

• config: YAML configuration file

• output: output directory in which to store the files

• rec-length: cutoff of the recommendation

recommendation train test multigraph directed weighted selfloops
readtypes config output rec-length [optional parameters]



Program configuration (YAML)

algorithms:

algorithm name:

param_name:

type: int/double/boolean/string/long/orientation

values: [value1,…,valueN] or value

range:

- start: start_val

end: end_val

step: step_val

metrics:

metric_name:

param_name:

…



Program output

• The recommendation program provides two classes of 
outputs:

- Recommendations: the generated recommendations. Csv files with 
the format:

Target_user \t Candidate_user \t Score

- Metrics: the metrics for the recommendations. A .csv file with the 
format

Variant \t Fraction \t Metric1 \t Metric2 \t … \t MetricN



Example configuration (YAML)

algorithms:
iMF:

k:
type: int
range:
- start: 10

end: 300
step: 10

alpha:
type: double
values: [10.0, 40.0]

lambda:
type: double
values: 150.0

metrics:
nDCG:

cutoff:
type: int
values: 10

Predicted Gini complement:
cutoff:

type: int
values: [1,5,10]



SNA

Network structural analysis



Studying the structure of networks

• Different networks present different structures

• Understanding our networks might provide insights on our 
algorithms

• Many properties can be measured



Types of properties

Node

• Degree

• PageRank

• Closeness

Edge/pair

• Distance

• Neighbor overlap

• Betweenness

Graph

• Clust. coefficient

• Density

• Diameter



Types of properties (community based)

• For now, communities are just partitions of nodes (we’ll provide a 
better definition later)

Individual community Graph (community-based)

• Degree

• Size

• Volume

• Modularity

• Edge Gini complement



How to use

• From command line: the sna program

• Computes structural metrics of a network

• network: the network to analyze
• multigraph/directed/weighted: true/false if network is 

multigraph/directed/weighted
• selfloops: true if we want to read self-loops
• config: YAML configuration file
• output: output directory in which to store the files
• communities: community files (see later)
• --distances: a flag to pre-compute distances between nodes

sna network multigraph directed weighted selfloops config output 
(-communities comm1,…,commN --distances)



Program configuration (YAML)

metrics:

metric name:

type: vertex/edge/pair/graph/indiv. community/global community

params:

param_name:

type: int/double/boolean/string/long/orientation

values: [value1,…,valueN] or value

range:

- start: start_val

end: end_val

step: step_val



YAML example

metrics:

Clustering coefficient:

type: graph

params:

uSel:

type: orientation

values: IN

vSel:

type: orientation

values: OUT

Eccentricity:
type: vertex

Embeddedness:

type: edge

params:

uSel:

type: orientation

values: IN

vSel:

type: orientation

values: OUT



Program output

• The recommendation program provides many outputs:

• global.txt: a .csv file containing
• Global metrics

• Averaged vertex/node/indiv. community metrics

• Format:

Metric \t Value

• Directories for every other metric, containing a file per metric
• For vertex metrics: Node \t Value

• For pair metrics: Origin \t Destination \t Value

• For indiv. community metrics: Community \t Value



Effects of recommendations

• There is also a program for measuring the effect of recommendations

• The program is named effects

• Configuration file is the same

• It only computes global properties

• More information in the documentation of the library



SNA

Community detection



Communities

• Homophily: similar nodes tend to
relate to each other

• It is a characteristic of real world
networks
• Groups of tightly connected nodes

• Barely connected to each other

• We name those clusters of nodes
communities



Community detection algorithms

• Connectedness-based approaches
• How many nodes can we reach from a particular node?

• In undirected networks: connected components

• In directed networks: strongly / weakly connected components

• Modularity-based approaches
• Modularity measures how good a clustering is

• Compares:
• Links inside communities

• Links between communities we would have in a random graph keeping the degree 
distribution

• Methods: Louvain, Infomap



How to use

• From command line: the communities program

• graph: the network on which we want to detect communities

• multigraph/directed/weighted: true/false if network is 
multigraph/directed/weighted

• selfloops: true if we want to read self-loops

• config: YAML configuration file

• output: output directory in which to store the files

communities graph multigraph directed weighted self_loops config 
output_dir



Program configuration (YAML)

algorithms:

algorithm name:

param_name:

type: int/double/boolean/string/long/orientation

value: value

Example:
algorithms:

Louvain:
threshold:

type: double
value: 0.0001



Program output

• The recommendation program provides an output for each 
selected algorithm

• It includes the community partition

• CSV file (tab separated)

• Format

Node \t Community



DIFFUSION

Information diffusion



Information diffusion

• Edges in networks (and in special social networks) are 
channels for communicating information

• Example: We read tweets thanks to our followed users

• The information diffusion process is complex

• Mechanisms of it are not exactly known

• Some models have been proposed



Information diffusion in RELISON

• Based on simulation

• Simulate the simultaneous diffusion of different pieces of 
information

• Highly configurable simulation

• Multiple components



Information spread



Information reception



Future 
directions



Future directions

• Knowledge graph support

• Node / graph embeddings

• Python wrapper (pyRELISON)

• Network visualization

• Suggestions?



Do you want to help?

•Help to improve RELISON wanted!

•Contact me!
• Office: F111
• E-mail: javier.sanz-cruzadopuig@glasgow.ac.uk
• Skype
• Teams
• Twitter….

• Together we can make RELISON better!

mailto:javier.sanz-cruzadopuig@glasgow.ac.uk


OFFICIAL WEBSITE GITHUB TWITTER

Do you want to know more?


