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Financial Asset Recommender (FAR) systems use models trained on past data to suggest
investment assets to customers. The effectiveness of FAR models can be evaluated in two
ways: (a) measuring the money customers could obtain if they followed the
recommendations (profitability-based) and (b) quantifying the ability of models to predict
future customer investments (transaction-based). In this work we compare these strategies
to determine which should be the primary metric for evaluating FAR systemes.

1. Task and Motivation
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Maximize return on Investment * RQ1: Are transaction-based and profitability-based metrics
investment (ROI) interchangeable when evaluating financial asset recommendation
systems?
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3. Dataset Only for a subset of the customers, we can

see that there is a wide spread in terms of Recommendation date

* Snapshot of the Greek market covering a range of different holding time amongst the customers,
securities: stocks, bonds, mutual funds and other banking products indicating that a range of prediction time
for the period between January 2018 and March 2021 horizons are needed @
» Evaluation performed for 29 time points, spaced 2 weeks apart 0.25 0%
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Unique assets 5,371 0 -
Assets with investments 2 025 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24+
price data points 1768,128 Avg. stock holding time (months)

Average return (by assets, whole period) 23.67%
% profitable assets 53.08% 5. Conclusion

Multiple factors make transaction-based metrics risky as an evaluation metric for

Customer data financial asset recommendation systems:
Property Value e Variable investment horizons
Unique customers 52,390 * Market volatility
Transactions 313,004 * Ability of the customers to navigate the market
Acquisitions 269,031
Average return (by customers, whole period) 18.41%
% customers with profits 58.00% This work was carried out as part of the Infinitech project which is
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