

What's my next Investment? Automated Recommendations for Investors

05-10-2023 – Scottish Fintech Festival 2023

Engineering and Physical Sciences Research Council

Agenda

- 9:30-9:35: Introducing Financial Informatics at Glasgow
- 9:35-9:50: An Introduction to Financial Recommendation
- 9:50-10:45: Challenges and Solutions for Effective Financial Asset Recommendation
- Break
- 11:00-11:30: Hands-on Tutorial on Financial Asset Recommendation
- 11:30-12:30: Demonstrations, poster session and networking

FinTech Scotland

Financial Informatics @ Glasgow

What's my next Investment? Automated Recommendations for Investors 05-10-2023 – Scottish Fintech Festival 2023 Dr. Richard McCreadie

Financial Informatics

- Financial Informatics is a research theme hosted by the Information, Data and Analysis section
 - It represents a cross-cutting group of researchers in Computing Science working on the research and development of AI and Information Retrieval technologies applied to financial use-cases and data

Dr. Richard McCreadie (Lead) Real-time IR, Machine Learning, Big Data Stream Processing, Evaluation

Richard.McCreadie@glasgow.ac.uk

Professor ladh Ounis Information Retrieval, Data Science, Big Data Analytics, Sensing Systems Madh.Ounis@glasgow.ac.uk

Professor Craig Macdonald

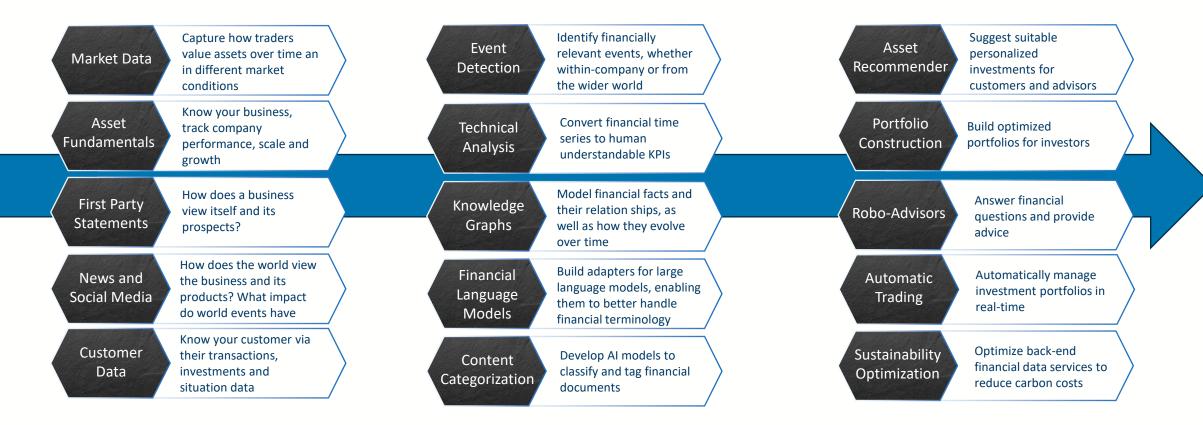
Information Retrieval for Web, Enterprise, Social Media and Smart Cities

Craig.Macdonald@glasgow.ac.uk

Dr. Javier Sanz-Cruzado

javier.sanz-cruzadopuig@glasgow.ac.uk

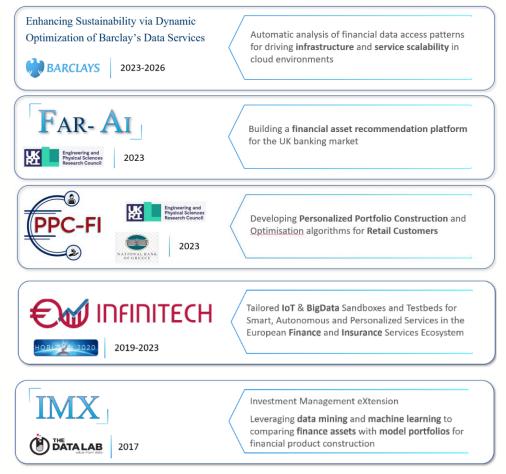
We specialize in the development of sophisticated AI-powered services, which can collate, analyse and apply financial data in real-time



Three Research Pillars

Collate Diverse Information from Multiple Modalities

Analyse to Build Models, Data Structures and Gain Insights


Apply our technologies to tackle real financial use-cases

Current Areas of Interest and Projects

- Ongoing Research
 - Knowledge Graph Construction and Smart Embeddings from News and Financial Reports
 - Real-time Identification of Impactful Financial Events
 - Answering Financial Questions using Generative Models
 - Search over Financial Corpora

Computing Science

School of

FinTech Scotland

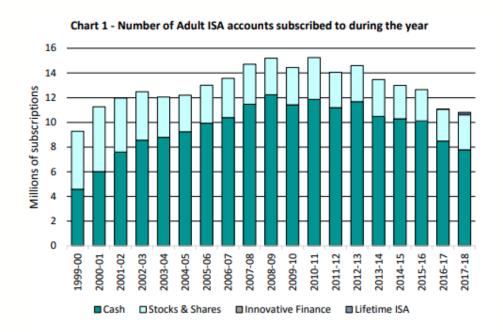
An Introduction to Financial Recommendation

What's my next Investment? Automated Recommendations for Investors 05-10-2023 – Scottish Fintech Festival 2023 Dr. Richard McCreadie

Investing for the Future

Problem and Challenges

267


to and

The second second state Investment Investment Value at Year end 424 963 446 211 467 459 468 522 1 005 037 491 948 1 620 915 516 545 2 324 149 3 124 764 42 372 69 491 4 033 850 Start at monthly 5 063 675 can be do this R 35 414 5

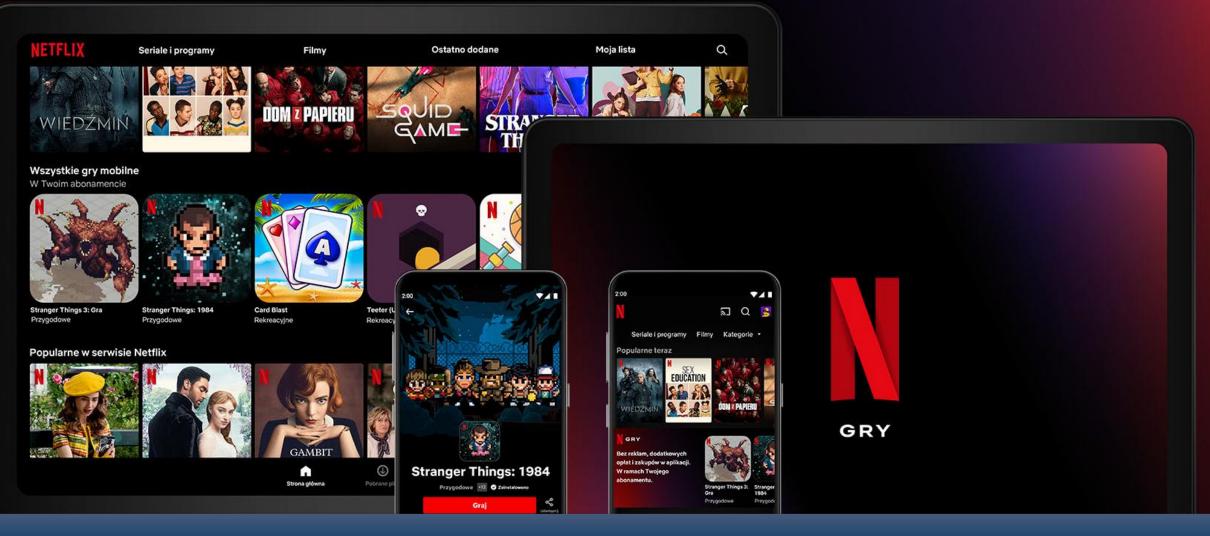
Personal Investment Problem

- We are currently living in a world where only a small fraction of the public sufficiently invest for the future
 - **35%** (18.4 million) of the UK adult population say they don't have a pension.
 - **43%** of the population admit they don't know how much they will need for retirement.
- One way to tackle this is to encourage people to invest spare cash rather than have it lie un-used in current accounts
 - But only around **4-5%** of adults in the UK have stocks and shares ISAs (one of the most cost-effective ways of doing this)

Challenges to Investment



There are a wide array of reasons that people choose not to invest in financial assets even if they have the money to do so, including:


- **Complexity**: Finance is complicated, and many people are not sufficiently educated to understand the consequences of their decisions (...and the large volumes of financial jargon does not help!)
- **Time**: Investing successfully takes time and effort to research and understand the target markets, most people don't have the time for this
- **Risk**: There are a wide range of investment risks, and some of those are difficult to effectively quantify
- **Choice**: The range of possible investments is so large that choice paralysis is a barrier
- Advice: Its not clear to a new investor where the should go to get advice, and who they can trust

Investment Recommendation

- Given these problems, we cannot expect an average member of the public to become a savvy investor on their own
- They need a financial advisor to analyze their position and recommend assets to invest in personalized to them
 - Manage investment risk to the customer by identifying profitable assets that meet their risk profile
- ... but expert financial advisor time is limited and expensive
 - Also, may only specialize in particular asset types or markets



A Quick Primer on General Recommendation

Recommendation

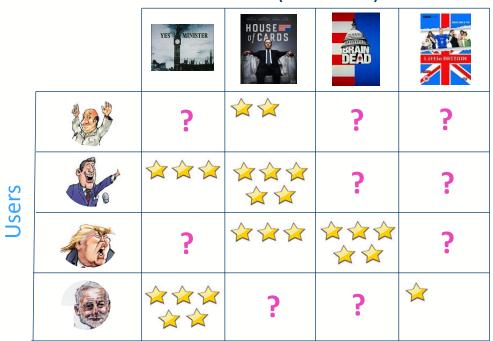
- There are many cases where we want to provide or suggest things to people (online)
 - We refer to this as Recommendation
 - We want to recommend items to users
- Recommendation is **Big Business**
 - Netflix thinks it's algorithm is worth a lot of money: \$1 billion per year

Recommendation Signals

- To perform recommendation, we need to know something about the preferences of the user
 - Platforms that make use of recommendation put a lot of effort into collecting data on what you like
- When you use platforms like Amazon and Netflix you reveal a lot of information about your preferences (signals):
 - Explicit
 - Did you rate an item?
 - Most shopping platforms will send you a reminder email if you don't!
 - Streaming sites like Netflix ask you to rate a film/series after watching it
 - Implicit
 - Where you shown/recommended something but passed over it?
 - Time spent on an item's page
 - Shopping/navigation history

The User-Item Matrix

- These signals are often represented by a user-item matrix
 - Columns are our items (books/movies/hotels)
 - Rows are our users (what do they like?)
- The cells of the matrix contain the signals that the platform has for that user and item pair
 - Lets assume explicit ratings
 - E.g. Star rating (1-5)



Items (TV Series)

The Recommendation Problem

- This matrix is sparse
 - There are lots of items that users have not rated
- Recommendation can be viewed as the task of predicting these missing ratings

Items (TV Series)

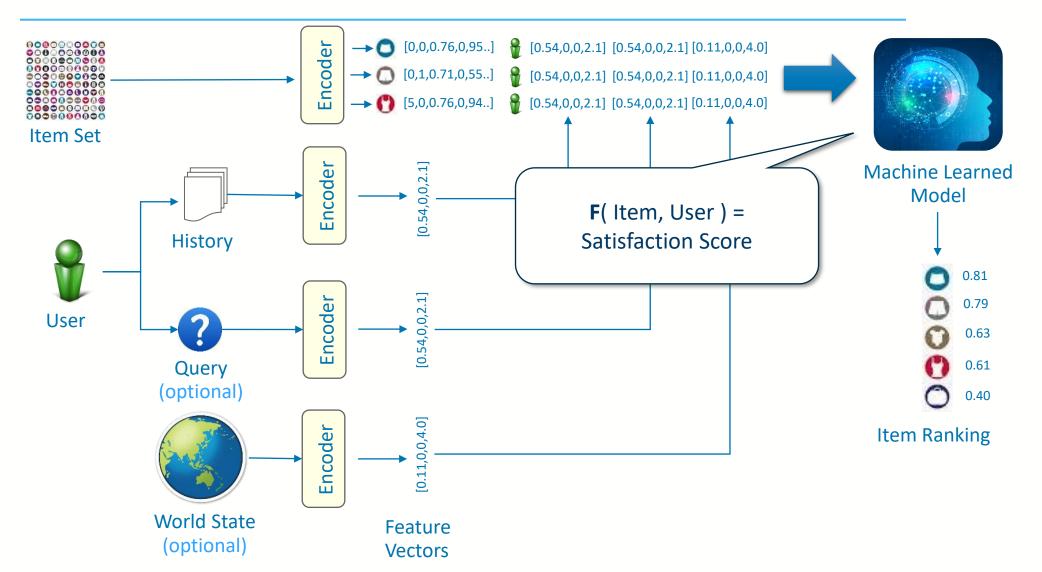
Approach Timeline

Item Hierarchy	 Encode expert knowledge about items "You bought a paint brush, hence you will also need paint"
Attribute-based	 Match attribute patterns in items you rated to find new items you might like "You like movies staring Clint Eastwood, hence you might like Dirty Harry"
User-User Similarity	 Group users by similarities in their ratings, similar users will like the same things "People like you bought the Avengers film, hence you will like it too"
ltem-ltem Similarity	 Group items by their inherent similarity (item-type dependant) "You like Godfather so you will like Scarface"
Social Graph Similarity	 Recommend items that your friends like "Your friends like Star Wars, so you will too"
Model- Based	 Lets try and learn from the data how to match users to items "Recommend items the machine-learned model says to because its smarter than you"

Time

Collaborative Filtering Using Data Mining and Analysis. Vishal Bhatnagar. Book 2016.

Model Based Solutions (AI)


- Model based solutions are based on Machine learning
 - The process of teaching a computer by example how to do a task automatically
 - Involves having the computer learn a function by example that takes in data and outputs some meaningful labels or scores
- The function we want to machine learn in a recommendation setting is an estimator for user satisfaction in an item given information about the user
 - This might be predicting a rating or estimating more granular score for the item

Computing Science

School of

Example: Regression-Based Recommendation

Financial Recommendation

Robo-Advisors

- Robo-advisors are computer programs that can analyse customer and market data and provide financial advice
 - First devised around 13 years ago, they are becoming increasingly common, with companies like Betterment, Wealthfront, and Personal Capital managing an estimated \$25 billion worth of assets (2017)
 - In 2018, they were estimated to manage around \$200 billion worth of assets worldwide
- Financial Recommendation systems can drive robo-advisors (but not all robo-advisors are financial recommendation systems)

operation == "MIRROR y rror_mod.use_x = False rror_mod.use_y = True rror_mod.use_z = False operation == "MIRROR_Z" rror_mod.use_x = False rror_mod.use_y = False rror_mod.use_z = True

election at the end -ad _ob.select= 1 er_ob.select=1 ntext.scene.objects.action "Selected" + str(modifient icror_ob.select = 0 bpy.context.selected_ob _bpy.context.selected_ob _ata.objects[ore.name].set

fint("please select exactly

What are our Items? (Financial Assets)

Stocks / Shares

 Fractional ownership in a company, which usually comes with some voting rights and potentially dividends (payouts when the company does well)

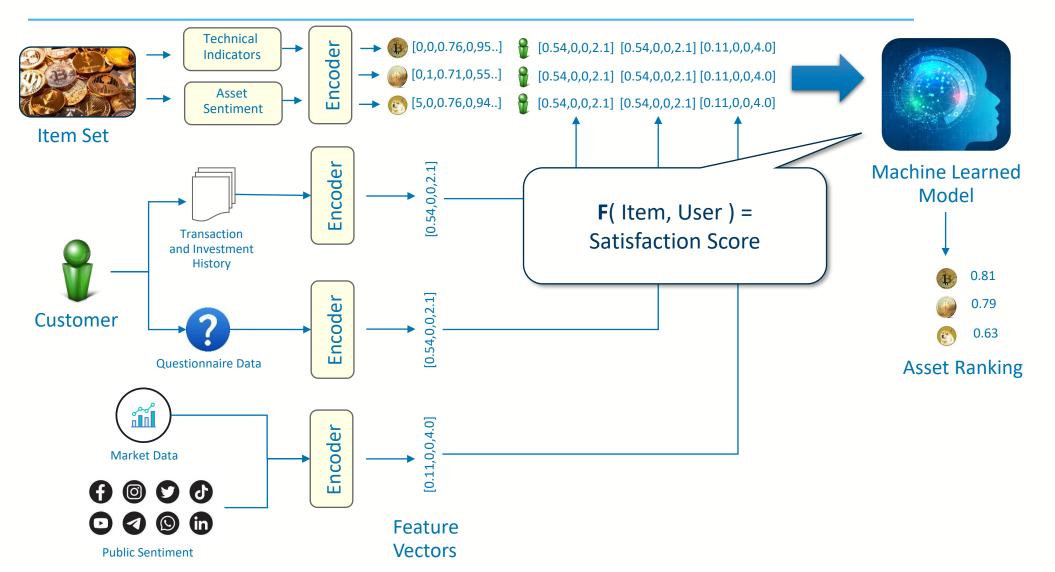
Computing Science

Who are our Users?

Professional Investors

- Experienced
- Large investor >£100k
- Likely has preferences on where to invest
- May have an investment strategy
- May be able to predict how long they can invest for
- We likely have some history about their past investments

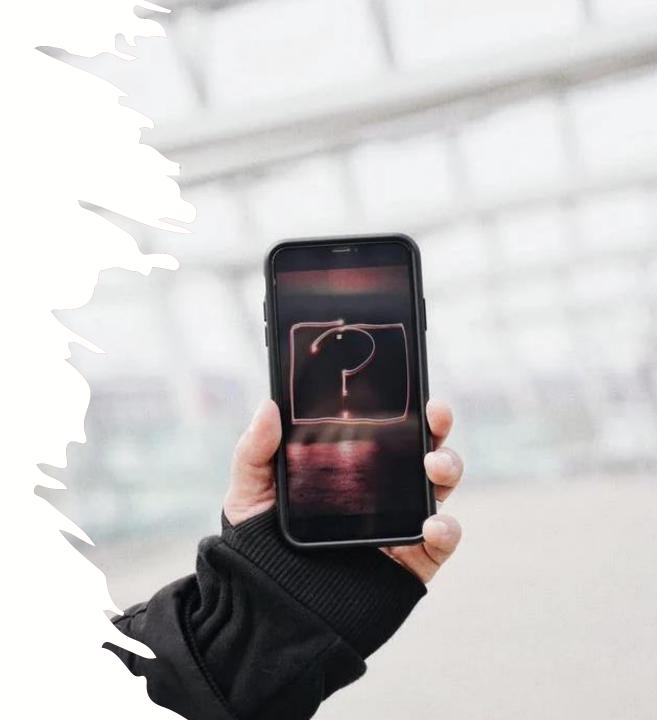
Retail Investors


- Inexperienced
- Small Investor <£100k
- Usually has no idea of what they could invest in
- Will not have an investment strategy
- May have significant uncertainty on how long they can invest for
- Usually a cold-start user with no prior investments

Computing Science

School of

Example: Regression-Based Recommendation


Questions?

Dr. Richard McCreadie

Real-time IR, Machine Learning, Big Data Stream Processing, Evaluation

Richard.McCreadie@glasgow.ac.uk

