

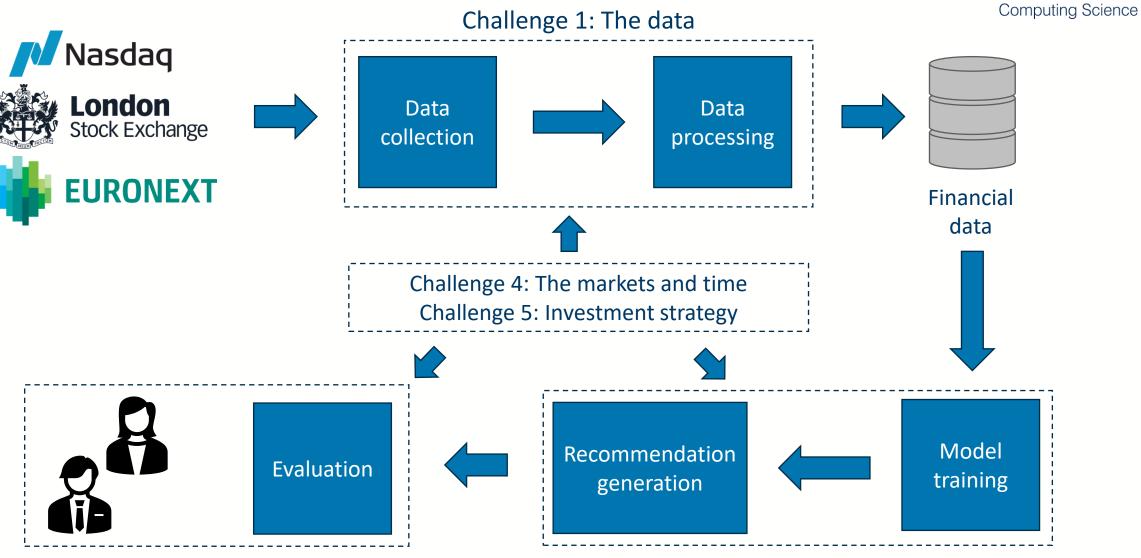
FinTech Scotland

How to provide effective financial asset recommendations?

What's my next Investment? Automated Recommendations for Investors 05-10-2023 – Scottish Fintech Festival 2023

Dr. Javier Sanz-Cruzado

A pipeline for financial asset recommendations



Challenge 3: The evaluation

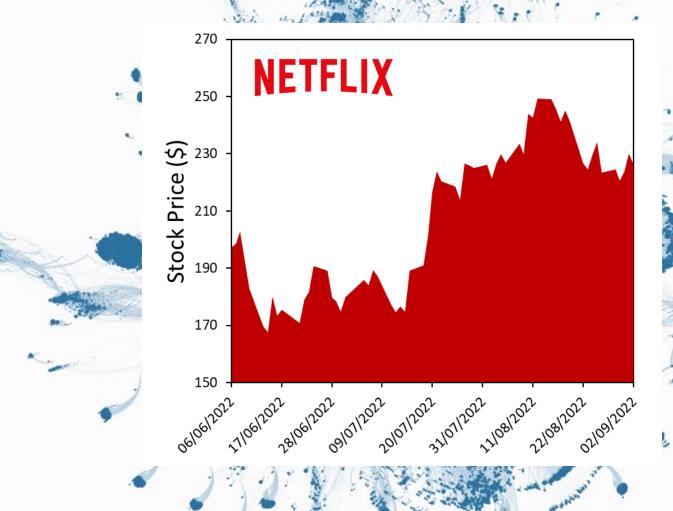
Challenge 2: The methods

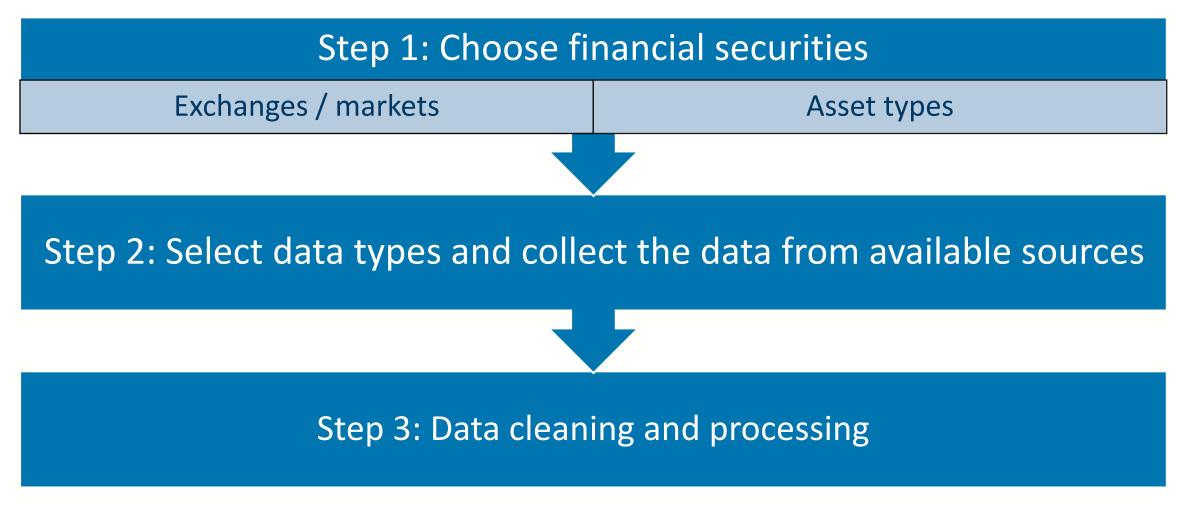
School of

Data

Financial data

- Fundamental to train, deploy and evaluate financial asset recommendation algorithms
- Properties of financial data:
 - Dynamic
 - Noisy
 - Incomplete
 - Massive
 - Challenging to get





Step 1a: Financial markets / exchanges

School of Computing Science

- Public financial instruments are traded in securities exchanges.
- Every market covers a range of financial products / product types.
- Examples of exchanges:

• More: <u>https://globalexchangesdirectory.com/</u>

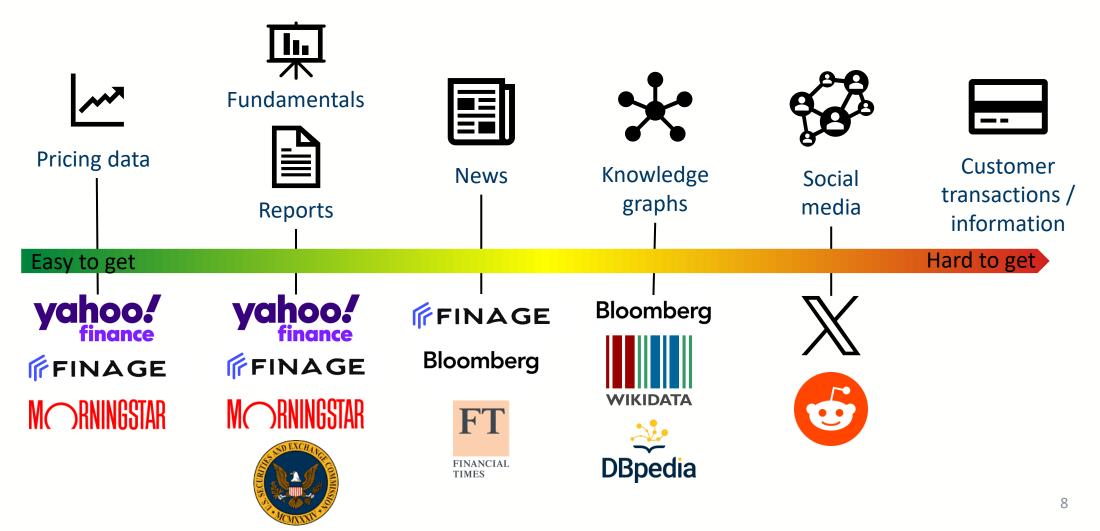
Step 1b: Asset types

- There are multiple types of securities we can trade in financial markets
- Every security behaves differently

Stocks / Shares	Bonds	Currency (FX)	Exchange Traded Funds	many more
 Fractional ownership in a company, which usually comes with some voting rights and potentially dividends (pay- outs when the company does well) 	 A contract whereby in exchange for money now, the company or government will pay back that money at a later date and pay interest on the borrowed money 	 Fiat Currency or virtual dog- themed pseudo currency 	 Fractional ownership of a large pool of other financial assets managed by a company 	 Options Derivatives Commodities Fine-art NFTs

Step 2: Information types

• We can collect multiple types of information to provide financial asset recommendations



- Financial data is noisy
- It is impossible to prevent this!
- But we can assist our algorithms
- Warning: we need to feed our algorithms with good data; otherwise, results might not be as expected!
- Data cleaning: check that your data is consistent
 - Don't leak future information!
 - Remove negative / zero prices
 - Make sure closing price is between min and max prices
 - Unify currencies

Step 3: Data processing

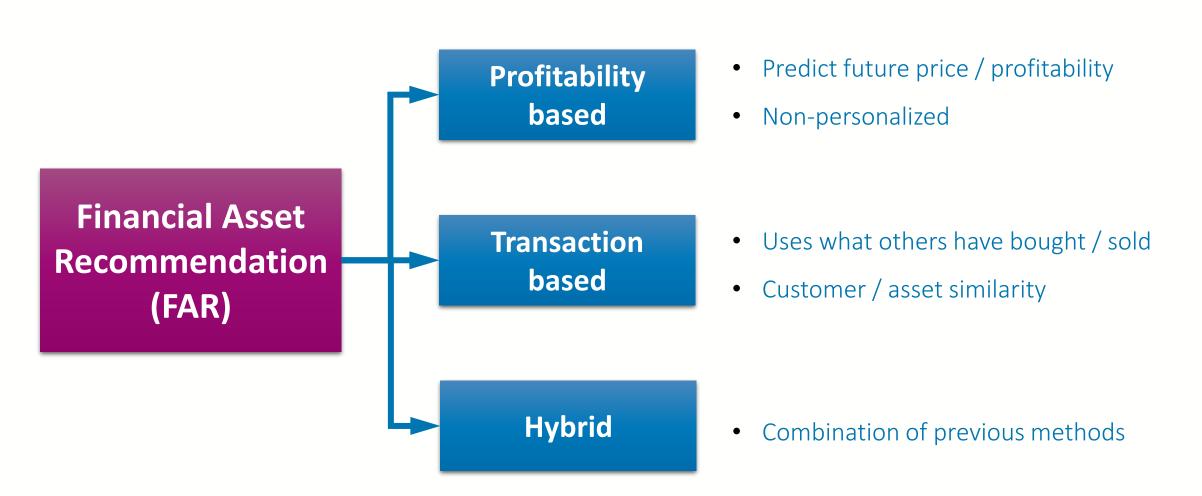
- Our algorithms need to understand the data
- Sometimes, it is necessary to generate features for them to understand it
 - **Technical indicators:** heuristic signals produced by price and volume of a security, used by investors to make decisions
 - Return on investment
 - Volatility
 - Moving average of closing price
 - News / social media sentiment: how do people feel towards a particular company / product?
 - Embeddings: summarize texts, knowledge graph nodes, etc. in a vector that an algorithm can analyse.

- The data available in the market is massive and noisy
- We need to choose many aspects of it:
 - Securities to consider
 - Types of data
- It is important to clean and process the data
 - Inconsistent data might prevent algorithms from succeeding
 - Algorithms cannot directly use all the information available
 - We need to generate features they can understand

Algorithms

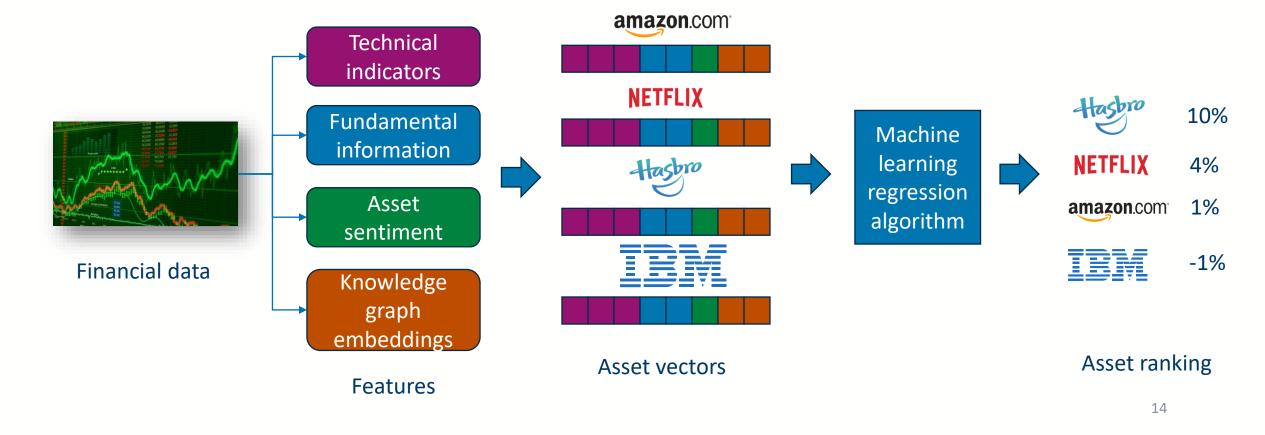
Conclusions on data

Computing Science



Profitability-based recommendation

- **Goal:** predict future profitability / price of financial assets.
- They are based on machine learning regression algorithms.
- Recommendation score: estimated profitability at fixed horizon



Profitability-based recommendation

School of Computing Science

- Example algorithms:
 - Linear regression
 - Random forest regression
 - Neural networks (GRU, LSTM)

• Strengths:

- Aligned with investor goal of earning money.
- Capable of dealing with time series information.
- Capable of integrating multiple sources of information in a simple way.

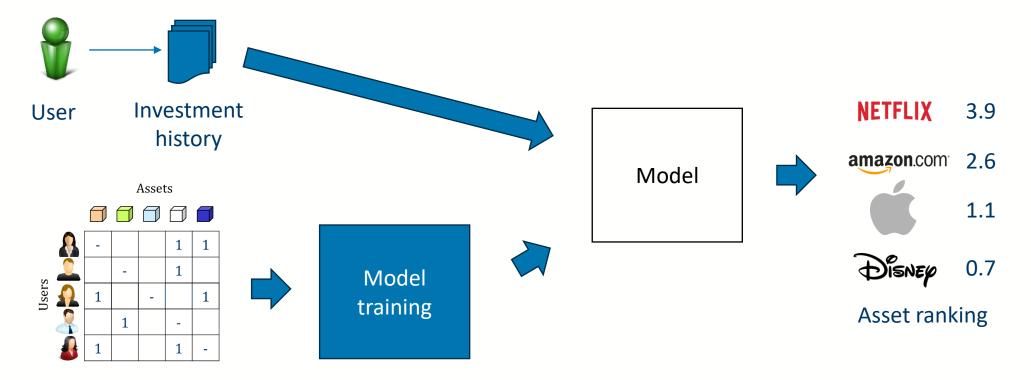
• Weaknesses:

• Not personalized (only use asset information)

Transaction-based recommendation

School of Computing Science

- Consider customer interactions with financial assets.
- **Goal:** Predict future investments of the investors.
- Recommendation score: estimated utility of an asset for an investor.



User – asset matrix

Types of algorithms

- Collaborative filtering
 - Idea: similar customers invest on similar assets.
 - Algorithms: k-nearest neighbors, matrix factorization, LightGCN
- Content-based:
 - Idea: customers invest on similar assets to those they invested in the past
 - Create a customer profile representation from asset information about past investments.
- Demographic recommendation:
 - Idea: customers with similar demographic features (age, risk aversion, etc.) invest on similar assets
 - Algorithms: k-nearest neighbors

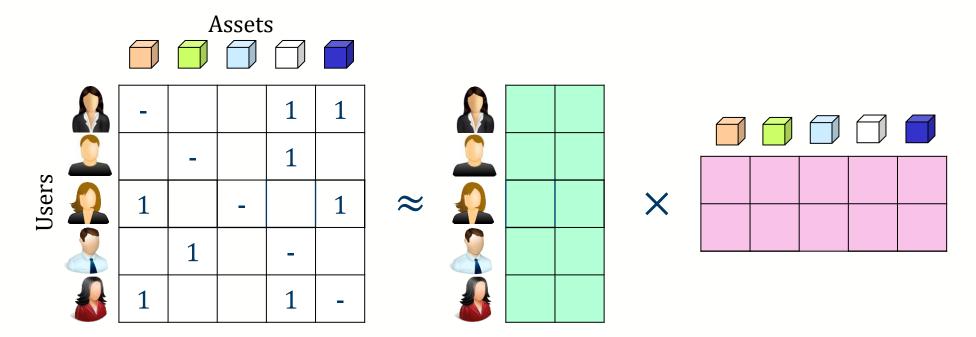
Types of algorithms

- Social-based recommendation
 - Idea: social connections influence users on their investments.
 - Algorithms: trust-aware k-nearest neighbors.
- Knowledge-base recommendation:
 - Idea: apply specific domain knowledge about how items meets user needs and preferences.
 - Algorithms: case-based reasoning, fuzzy logic.

Algorithm example: matrix factorization

School of Computing Science

• Matrix factorization represents users and items in a low-dimensional latent space.



- User vectors summarize customer preferences on assets.
- Item vectors do the same with assets.
- Scores: product on customer / asset vectors.

Transaction-based recommendations

- Strengths:
 - Personalized (deal with customer information).
 - They capture customer interests.

- Weaknesses:
 - Don't consider pricing information.

Hybrid-based recommendations

- Combine different types of data
- For instance, we could build a model using recommendation scores from other algorithms
- Idea: have all the strengths of previous algorithms without any of the weaknesses

Evaluation

Evaluation Goals

School of Computing Science

01

Determine whether recommendations are **useful**

02

Identify 'blind spots' in solutions 03

Choose the **best approaches** for deployment

- Essentially, depends on the goals of our system
- ... or the goals of our customer
- An investor wants to increase their money by using the system.
- A financial institution wants to increase their revenue by having more customers investing on the system.

How do we evaluate?

School of Computing Science

Profitability based

Financial Asset Recommendation

Transaction based

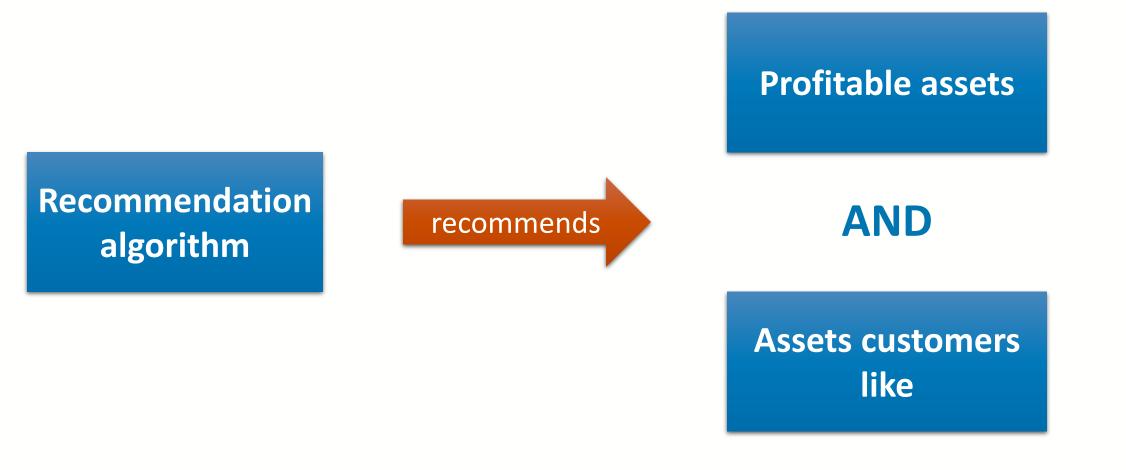
Do our customers earn money?

- Aligned with customer interests
- Ignores past/future customer actual investments
- **Metrics:** Key performance indicators at a fixed time interval
 - Return on investment (ROI)
 - Net profit

Can we predict future investments?

- Investment transactions indicate strong preference
- Relevant transactions: acquisitions
- Ignores temporal pricing information
- Metrics: Recommender systems metrics
 - Precision
 - nDCG

Ideal Scenario



Profitability-based metric example

Return on investment (ROI)

• For an asset: relative variation of the price of the asset between the recommendation time t and a fixed period Δt afterwards

$$ROI(i, t, \Delta t) = \frac{\text{price}(i, t + \Delta t) - \text{price}(i, t)}{\text{price}(i, t)}$$

- For a recommendation: average variation of price on the recommended assets.
- Equivalent to profitability of a fund where we invested equally on every asset.

Profitability-based metric example

Monthly Return on investment (ROI)

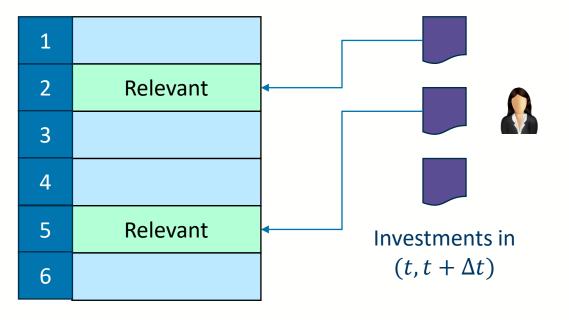
- Problem: ROI is impossible to compare among different time horizons.
- **Solution:** normalize it estimate, for instance, how much price moves every month.

$$\operatorname{ROI}(i, t, \Delta t) = \left(1.0 + \frac{\operatorname{price}(i, t + \Delta t) - \operatorname{price}(i, t)}{\operatorname{price}(i, t)}\right)^{\frac{30 \text{ days}}{\Delta t}} - 1.0$$

Transaction-based metric example

School of Computing Science

Normalized cumulative discounted gain (nDCG)



Recommendation ranking R

An item *i* is relevant for a customer *u* if *u* has invested in *i* in the $(t, t + \Delta t)$ period

DCG@ $k(u, R) = \sum_{i=1}^{k} \frac{\operatorname{rel}(u, i, t, \Delta t)}{\log_2(1+i)}$ We prefer relevant assets in the first ranking ________

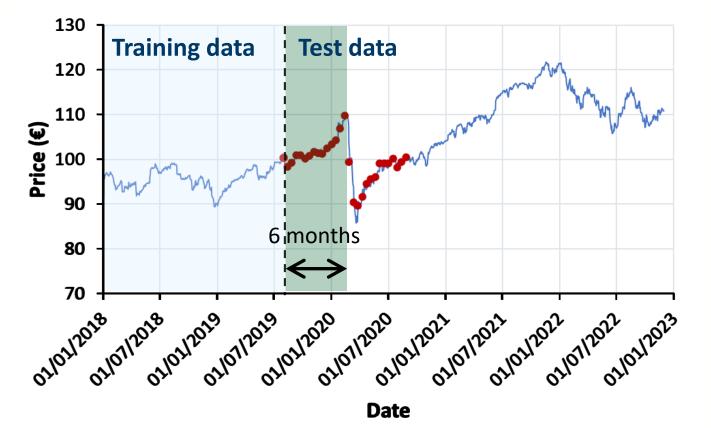
Normalize between the maximum possible value $IDCG@k(u) = \max_{R} (DCG@k(u, R))$ $nDCG@k(u, R) = \frac{DCG@k(u, R)}{IDCG@k(u)}$

How good are recommendation algorithms?

- We conduct experiments over real financial data
- We test different financial asset recommendations algorithms
 - Price-based algorithms
 - Transaction-based algorithms
- Are they profitable?
- Do they capture customer preferences?

- Greek market: stocks, bonds, mutual funds
- Period: 1st January 2018 30th November 2022
- Combines
 - Time series data (pricing information)
 - Customer investments
- Time series data:
 - 807 financial assets (321 assets with investments)
 - 703,303 data points
- Customer investments:
 - 29,091 customers
 - 387,783 transactions

Experimental procedure



Procedure

- 1. Select recommendation time *t*
- 2. Split into training / test
 - Training: from 1^{st} Jan 2018 to t
 - **Test:** from t to t + 6 months
- 3. Train models
- 4. Execute recommendations at t
- 5. Evaluate

29 time splits

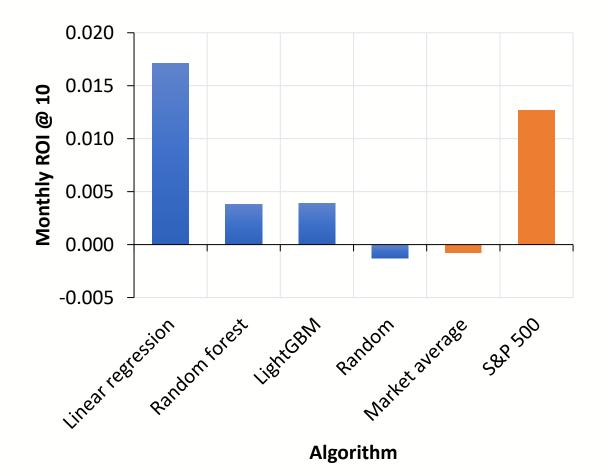
- One every two weeks
- From: 1st August 2019
- To: 28th August 2020

Profitability Prediction Algorithms

- Only based on price time series
- Use financial technical indicators to predict future profitability
 - ROI at 1, 3, 6 months
 - Volatility at 1, 3, 6 months
 - Etc.
- Three methods:
 - Linear regression
 - Random forest
 - LightGBM

How good are profitability prediction algorithms?

We compare the algorithms in terms of monthly ROI over the **top 10** recommended results



- All three algorithms improve the market average and random recommendation
- Linear regression improves S&P 500 index

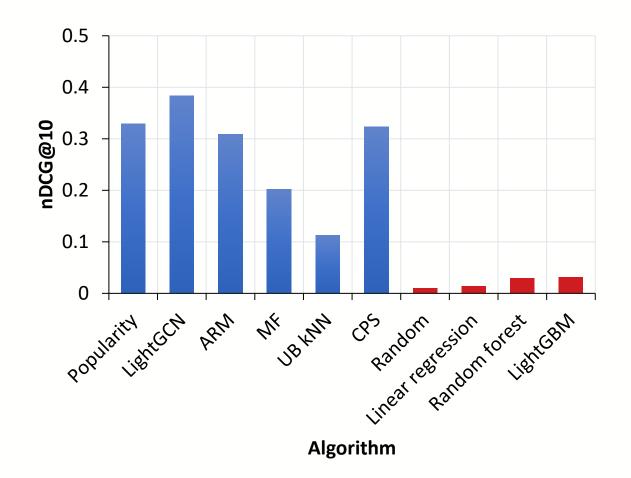
Transaction-based models

- Based on past transactions of the customer
- Consider what other customers have invested in
- Methods
 - Non-personalized: Popularity
 - Collaborative Filtering:
 - LightGCN
 - ARM
 - User-based kNN
 - **Demographic Information**: CPS

How good are Transaction-based Algorithms Predicting Customer Tastes?

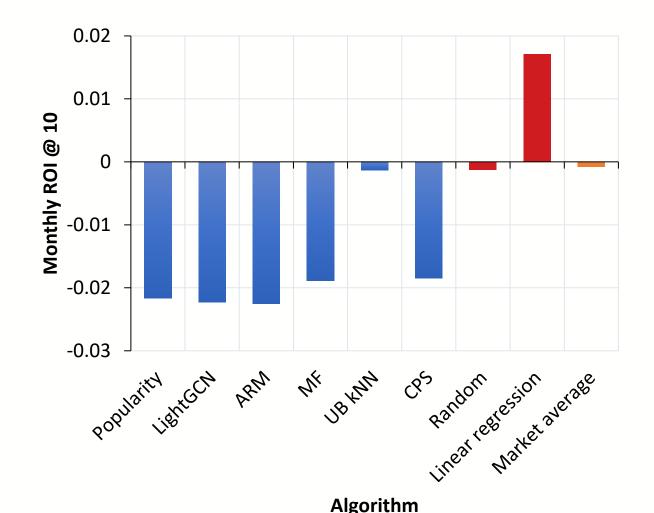
School of Computing Science

We look, again, at the top 10 recommended results



- All transaction-based algorithms recommend assets that are much more similar to what the customers actually later invested in
- But, are these recommendations profitable?

How good are Transaction-based Algorithms Recommending Profitable Assets?



- Transaction-based algorithms suggest (in general) unprofitable assets
- They don't beat the market (on average)

- Profitability prediction algorithms are better at recommending profitable assets
- But transaction-based models capture better the behaviour of customers
- Which algorithms are better?

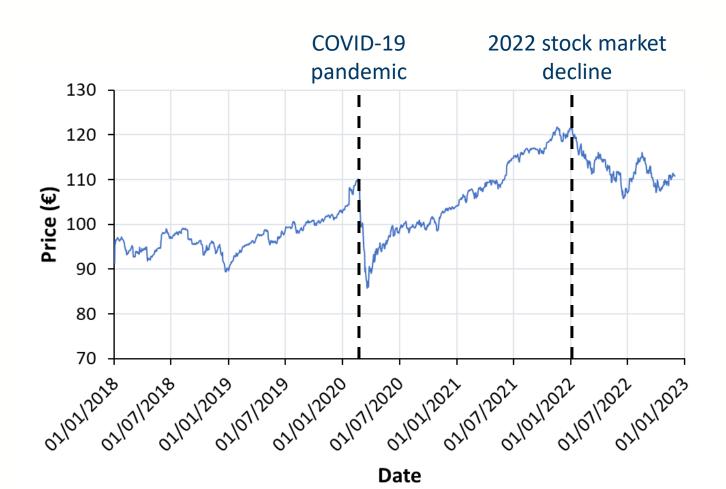
Conclusions on evaluation

- We need evaluation to determine how good our systems are.
- There are two main ways to evaluate financial asset recommendations
 - Profitability: do our customers earn money?
 - Relevance: are we able to predict future investments?
- We might choose different algorithms depending on our goal:
 - Profitability prediction algorithms work better for finding profitable assets
 - Transaction-based methods are better at identifying future customer investments
 - But the opposite is not necessarily true

Time

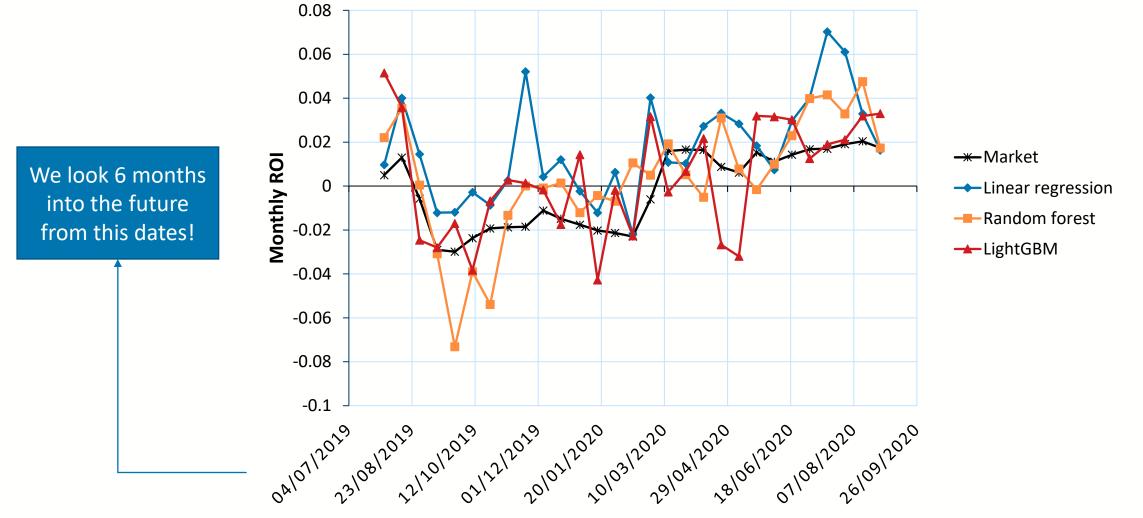
- In our previous experiments, we averaged our results over 28 different dates
- But, why? Isn't enough to check on one date?
- The answer is no:
 - Financial markets are very dynamic
 - Asset prices might change every few seconds (or less!)
 - Markets are also affected by external events
 - Product releases
 - Global events: pandemics, wars can affect the whole market!

An example on the Greek market



- Prices are not stable
- Market grows and declines depending on multiple factors
- Clear examples:
 - Covid 19 pandemic
 - 2022 stock market declined (aggravated by Ukraine war)
- Does this affect algorithms?

Profitability over time (profitability-based methods)

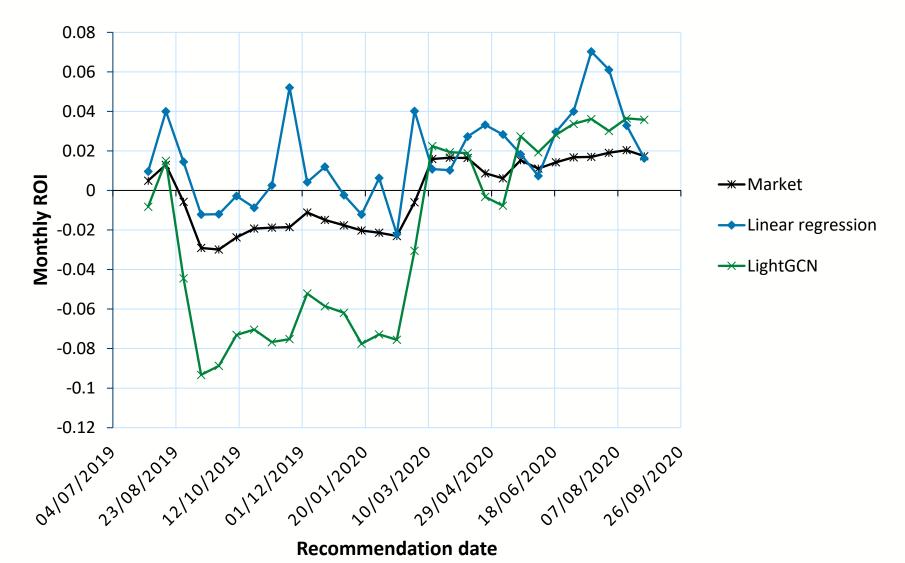


Recommendation date

Profitability Over Time (transaction-based models)

School of Computing Science

University of Glasgow

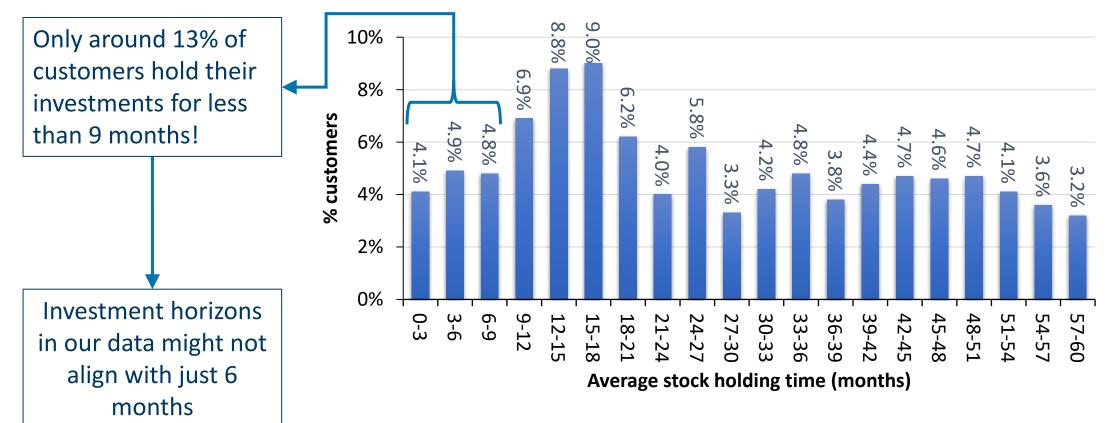


- In financial asset recommendations, time matters.
- Markets change a lot over time.
- Different financial asset recommendations might work very differently depending on the date we test it.
- If we test it over a single date, we might risk not detecting unwanted behaviours.
- Solution: consider different market conditions when training / evaluating
 - Upturns
 - Downturns
 - Stable periods

Investor preferences

Investors

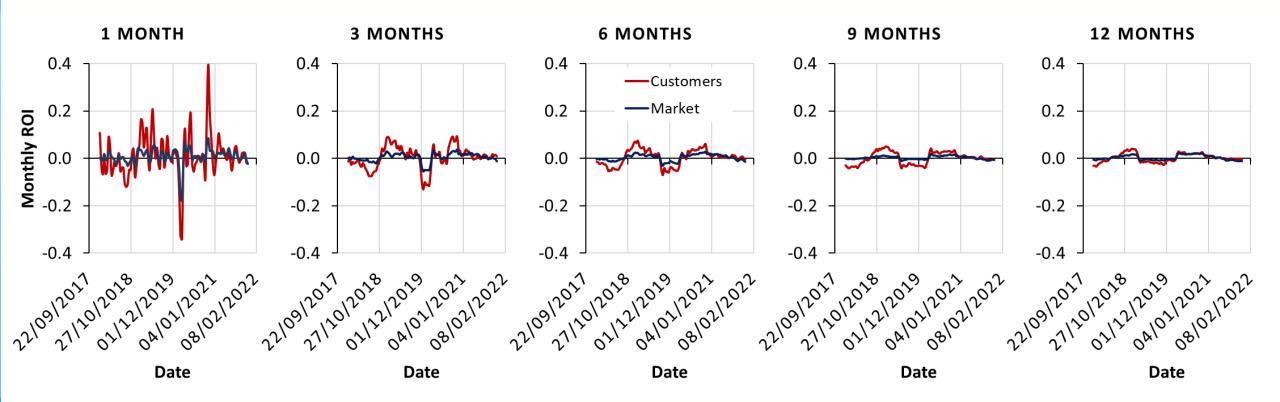
- Investors might follow different strategies on their assets
- How long do investors hold their assets?
- In our previous experiments, we assumed 6 months, but is that realistic?



Monthly Profitability at Different Time Horizons

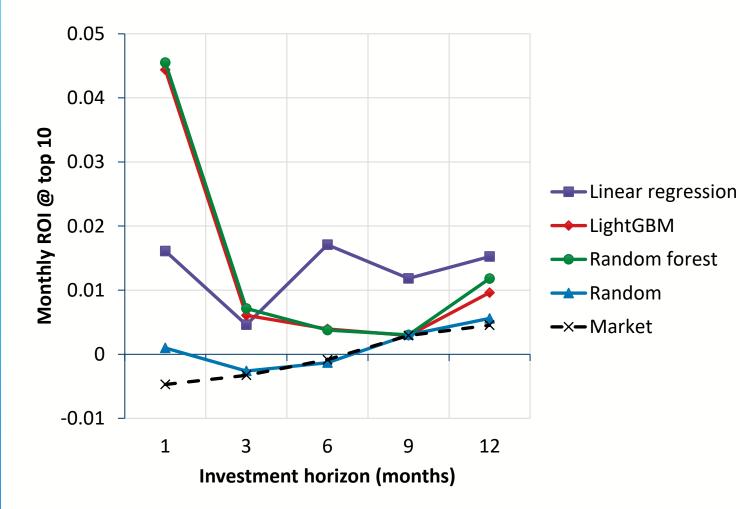
School of Computing Science

University of Glasgow



- The further we look into the future, the smaller (in absolute value) changes are
- What happens if we train models at different time horizons?

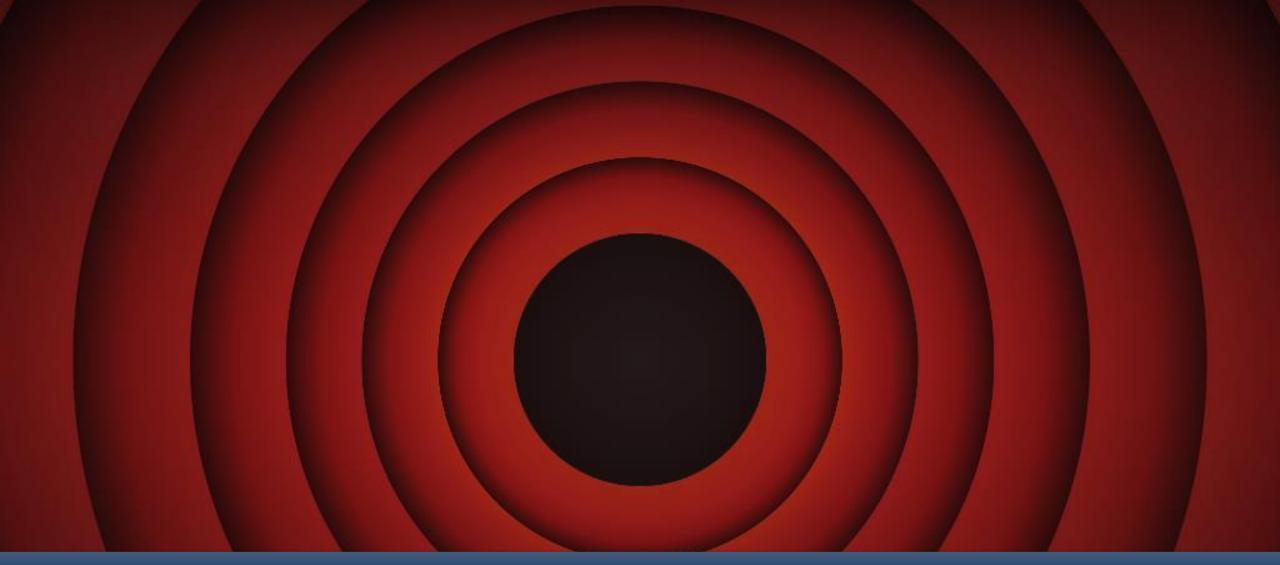
Price Prediction for Different Time Horizons



- Different algorithms work better at different time horizons
- Random forest / LightGBM are more effective at shorter time horizons
- Linear regression is consistent over time horizons (and better at longer term)

Conclusions

- In financial asset recommendations, we need to consider investor preferences.
- We might need to train different models for different preferences.
- We have seen this, for example, with the investment horizon.
- But there might be other factors:
 - Risk aversion
 - ESG preferences
 - Etc.



Conclusions

Conclusions

- We have explored five challenges of financial asset recommendations
 - Gather data
 - Choose a model
 - Evaluate the recommendations
 - Effect of time
 - Effect of investor strategies
- We have analysed the effectiveness of two groups of algorithms
 - Pricing-based methods represent promising algorithms, as they help customers beat the market
- Transaction-based methods capture customer preferences...
 - ... but recommend non-profitable assets, making them unreliable
- Best methods might change depending on the time / customer investment horizon

Automatic Recommendation... Recommendations

- Clean your data
 - Financial data is noisy
 - Bad data can hurt performance
- Train and evaluate models on varying market conditions
 - Some models might only work during upturns
 - But lose money during downturns (i.e. COVID-19)
- Consider investment strategies in design and evaluation

Questions?

Dr. Javier Sanz-Cruzado

Financial Recommendation Systems

javier.sanz-cruzadopuig@glasgow.ac.uk

