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Online social networks
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Online social networks (II)

 Establish new connections

 Communication

 Share and receive information

 Changes to our society
– Politics

– Privacy

– Lifestyle

– Communication
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Recommender systems

 Goal: From past user interactions, suggest items they might be interested in.

 Multiple domains
– Audiovisual content: Netflix, Spotify

– E-commerce: Amazon, eBay

– Academic publications: Google Scholar, Mendeley
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Recommendation task

4 4 2 2 4

1 4 4 3

4 3 2 1 4

4 3 3 1

1 1 5 2

U
se

rs

Items

Rating matrix

0.9

0.7

0.2

R
ecom

m
endation

4 4 2 2 4

1 4 4 3

4 3 ? 2 ? 1 4 ?

4 3 3 1

1 1 5 2

4 4 2 2 4

1 4 4 3

4 3 2 1 4

4 3 3 1

1 1 5 2

4 4 2 2 4

1 4 4 3

4 3 2 1 4

4 3 3 1

1 1 5 2



IRG
IR Group @ UAM

Contact recommendation in social networks: algorithmic models, diversity and network evolution
PhD Thesis, Universidad Autónoma de Madrid

Madrid, Spain, 25th May 2021

6

Contact recommendation
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Items

 Items = users

 Availability of social relationships

 Rating matrix = adjacency matrix
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Contact recommendation examples
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Why contact recommendation?

 Particular characteristics
– Development of new methods

– Use of social network analysis

 Creation of new links
– Main asset of online social networks

– Communication channels

– Source of information

– Increase engagement of users
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Research goals

 RG 1 : Algorithmic models

Explore the adaptations of text information retrieval (IR) models to the
contact recommendation task.

 RG2 : Diversity

Study the effect of contact recommendation on the properties of social 
networks.

 RG3 : Recommendation cycle

Explore contact recommendation as a cyclic task, and develop interactive
approaches to deal with it. N
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Outline

1. Adaptation of IR models
– Relation between IR and contact recommendation

– Advanced IR models

2. Beyond accuracy
– Structural diversity

– Effects on information diffusion

3. Interactive recommendation

4. Conclusions and future work
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Motivation

Machine 
Learning

Specific methods

Recommender
systems

Contact
recommendation

Information
Retrieval¿ ?
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Text information retrieval

Information
need

?

query

search engine

search
results

documents
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Relation between tasks
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Relation between tasks
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An example: BM25

Text IR:

𝑓𝑞 𝑑 = ෍

𝑡∈𝑑∩𝑞

𝑘 + 1 freq 𝑡, 𝑑

𝑘 1 − 𝑏 +
𝑏 𝑑

avg𝑑′ 𝑑
′ + freq 𝑡, 𝑑

RSJ 𝑡

𝑅𝑆𝐽 𝑤 = log
𝐷 − 𝐷𝑡 − 0.5

𝐷𝑡 − 0.5

Where

 𝑑: document

 𝑞: query

 𝑡 ∈ 𝑑 ∩ 𝑞: term

 𝐷: set of  all documents

 𝐷𝑡: documents containing 𝑡

 freq 𝑡, 𝑑 : frequency of 𝑡 𝑖𝑛 𝑑

 𝑑 : document 𝑑 length

Γ 𝑣 : candidate user

Γ 𝑢 : target user
𝑡 ∈ Γ 𝑢 ∩ Γ 𝑣 : neighbor user

𝒰: all users
Γ 𝑡 : 𝑣 containing 𝑡 in Γ 𝑣

𝑤 𝑡, 𝑣 : edge weight

len 𝑣 = σ𝑥∈Γ 𝑣 𝑤 𝑥, 𝑣
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An example: BM25

Text IR:

𝑓𝑞 𝑑 = ෍

𝑡∈𝑑∩𝑞

𝑘 + 1 freq 𝑡, 𝑑

𝑘 1 − 𝑏 +
𝑏 𝑑

avg𝑑′ 𝑑
′ + freq 𝑡, 𝑑

RSJ 𝑡

RSJ 𝑤 = log
𝐷 − 𝐷𝑡 − 0.5

𝐷𝑡 − 0.5

Contact recommendation:

𝑓𝑢 𝑣 = ෍

𝑡∈Γ 𝑢 ∩Γ 𝑣

𝑘 + 1 𝑤 𝑡, 𝑣 RSJ 𝑡

𝑘 1 − 𝑏 +
𝑏 ⋅ len 𝑣

avg𝑣′ len 𝑣′
+ 𝑤 𝑡, 𝑣

RSJ 𝑡 = log
𝒰 − Γ 𝑡 + 0.5

Γ 𝑡 + 0.5
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Experimental setup

 Offline evaluation

 Data from Twitter and Facebook

 Twitter
– Snowball sampling

– 2 samples
• 1 month: All tweets between 19th June and 19th July 2015

• 200 tweets: 200 last tweets by each user before 2nd August 2015

– 2 graphs / dataset
• Interaction networks: 𝑢, 𝑣 ∈ 𝐸 if 𝑢 mentions/retweets 𝑣

• Follow networks

 Facebook
– From Stanford Large Network Dataset Collection

– Union of 10 ego-networks
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Methodology

 Split:

 Hyperparameter selection: grid search (nDCG@10) 

 Evaluate using IR metrics on test: nDCG@10, MAP@10

All Links

Input Test judgments

Training Validation

Evaluation

Parameter tuning / training
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Dataset statistics

Twitter 1-month Twitter 200-tweets
Facebook

Interactions Follows Interactions Follows

Users 9,528 9,770 9,985 9,964 4,039

Input edges 170,425 645,022 104,866 427,568 56,466

Test edges 54,335 81,110 21,598 98,519 17,643

Directed ✔ ✔ ✔ ✔ ✘

Weighted ✔ ✘ ✔ ✘ ✘

Split type Temporal Temporal Temporal Temporal Random

Density 0.0018 0.0067 0.0013 0.0048 0.0087
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Algorithms

 IR models: 
– Probability ranking principle: BM25, BIR, ExtremeBM25

– Language models: Query likelihood (QLJM, QLD, QLL)

– Divergence from randomness: PL2, DFRee, DFReeKLIM, DLH, DPH

– Vector space model (VSM)

 General collaborative filtering
– User-based / Item-based kNN (cosine similarity)

– Implicit matrix factorization (iMF)

 Specific approaches
– Friends of friends: Adamic-Adar, MCN, Jaccard, cosine similarity

– Random walks: Personalized PageRank, Money,…

– Path-based: Local Path Index, Katz…

 Sanity check: Random and most popular
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Results (nDCG@10)

 IR models are effective
– BM25 among top 5

– Best: 200-tweets interactions

– VSM lowest performing IR model

 Rest of algorithms
– Implicit MF is best

– Adamic-Adar and MCN are competitive

– Jaccard/cosine are not very competitive

– Rest seem very graph dependent

200-tweets Facebook

Algorithm Interaction Follows

BM25 0.1097 0.1159 0.5731

BIR 0.1004 0.114 0.572

PL2 0.0983 0.1166 0.5712

VSM 0.0425 0.0787 0.5237

iMF 0.1035 0.1329 0.521

User-based kNN 0.0954 0.1297 0.5457

Item-based kNN 0.0724 0.1205 0.4542

Adamic-Adar 0.0997 0.114 0.5746

MCN 0.0948 0.111 0.5585

Resource allocation 0.0913 0.1117 0.5922

Personalized PageRank 0.063 0.0843 0.5891

Cosine 0.048 0.0768 0.4943

Popularity 0.0422 0.0397 0.0523

Random 0.0003 0.0018 0.003
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Can we do better?

>

1-month 200-tweets

FacebookAlgorithm Interaction Follows Interaction Follows

User-based kNN 0.1367 0.1413 0.0954 0.1297 0.5457

Item-based kNN 0.1174 0.1296 0.0724 0.1205 0.4542

Cosine 0.0393 0.0497 0.0480 0.0768 0.4943

User-based / Item-based
kNN (cosine similarity)

Standalone
cosine similarity

What if we try the same with IR models?
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Results kNN + IR (nDCG@10)
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Can we do even better?

 Idea: Learning to rank
– Supervised machine learning models

– Very effective in IR

 How does it work?
1. Sample candidates

2. Generate features for each target-candidate user pair

3. Generate recommendation ranking
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Our experiments

 Learning to rank algorithm: LambdaMART

 Features: Scores of contact recommendation methods
– IR models

– Friends of friends (FOAF) approaches

– User-based / Item-based kNN + IR / FOAF

 Sample suitable candidates: use IR models
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Learning to rank results

LambdaMART improves best recommendation baselines
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Conclusions (RQ1)

 We can use IR models as contact recommendation algorithms

 Direct IR models are both effective and efficient (BM25)

 IR-based models are better as neighborhood selectors for kNN

 Learning to rank techniques improve the accuracy of best state of the art algorithms

 IR models are effective in three different roles in contact recommendation
– Direct recommenders

– Neighborhood selectors in kNN

– Samplers and features in learning to rank
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Accuracy

 Fundamental goal of contact recommendation

 Increase network density

 Limitations:
– Local perspective: average over isolated users

– Narrow perspective: one-dimensional utility
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Beyond accuracy

 Users in the network are not isolated

 A few links can cause global effects

 Different links – different effects

 Contact recommendation
– 500 million new links/month on Twitter (as of 2015)

– Potential to drive network evolution
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Goals

1. Define suitable metrics to measure global benefits of recommendation

2. What do the metrics really mean? Do they capture relevant aspects of

network functionality?
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Effects on network structure

Original network

Algorithm 1 Algorithm 2 Algorithm 3
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How to measure?

User Score

𝑢2 0.9

𝑢3 0.8

𝑢4 0.1

𝑢1

𝑢2

𝑢3 𝑢4

𝑢5
Structural

metricRecommendation
ranking
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Potentially relevant structural features of social networks

 Structural diversity
– Source of novel information

– Enrichment of the information flow

– Related to the notion of weak tie (Granovetter, 1978)

 Strength of a tie
– Measures the involvement of users in the tie

– Strong ties: family, close friends.

– Weak ties: people you meet in conferences, shopkeepers.

 In the network structure: non-redundant links
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Weak ties: local notions

 Consider the direct environment of the link

 Triadic closure: minimum unit of structural redundancy

 Metric: clustering coefficient complement
Measures the proportion of non-redundant triads in the network

B

A

C B

A

C

a) Non-redundant triad b) Redundant triad
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Weak ties: global notions

 Weak ties: links between communities
– Tightly connected groups of nodes

– Few connections outside the group

 Modularity complement (MC): number of weak ties

1
10

2

3
4

5

6

11

7

8

9

1
10
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11
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Weak ties: global notions (II)

 Community edge Gini complement (CEGC)
– New metric

– Distribution of weak links between pairs of communities

– Based on the Gini index

Weak-link redundancy Weak-link diversity
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Effect of recommendation algorithms on structural diversity

What do these numbers really mean 
for the network?

Algorithm nDCG@10
Clustering 
coefficient

Modularity
Community 

Gini
iMF 0.139 0.902 0.155 0.045

BM25 0.104 0.878 0.150 0.041

Adamic-Adar 0.098 0.882 0.149 0.041

MCN 0.092 0.879 0.145 0.040

Pers. PageRank 0.100 0.915 0.182 0.054

Popularity 0.057 0.924 0.295 0.061

Random 0.001 0.952 0.280 0.091

Original network - 0.9437937 0.1463597 0.0390234
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Filter bubbles

We analyze the potential of weak ties on reducing filter bubbles
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Diffusion experiment

 Hypothesis

 Experiment on interaction networks
1. Start with a baseline: Implicit MF / BM25

2. Apply gradual rerankers for optimizing a metric

3. Extend the network with top 𝑘 recommended links

4. Run propagation of (real) tweets through the network

5. Measure diffusion properties (novelty & diversity) 

The more structurally diverse the recommendation is,
the more diverse and novel the information flow through
the network will be.
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Diffusion properties

 Measured in terms of tweet hashtags (as topics)

 Novelty
– Proportion of the hashtags unknown to the users.

– Known hashtags: hashtags in their original tweets.

 Diversity
– How evenly are hashtags propagated over the population

– Complement of the Gini index
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the information flow

𝜆 = 1

nDCG@10
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Conclusions (RG2)

 Accuracy is a partial perspective

 We propose evaluation perspectives beyond accuracy
– Global network effects beyond (averaged) isolated user gains

– New metrics elaborating on weak ties

 Enhancing the number of weak ties improves novelty & diversity 
of the information arriving to the users
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Motivation

 Previous parts: single recommendation step

 However
– Recommendation does not work in a single step … 

but in an interactive process

– Social networks are dynamic systems, constantly changing

– And so recommender systems are
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Interactive recommendation

 More realistic perspective

 Cyclic nature of recommendation

System Users

Recommendation

Interactions
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Multi-armed bandits

 Select the best among several actions (arms)

 Exploration vs. exploitation
– Select arm with highest estimated value (exploit)

– Select arm to gain knowledge (explore)

$

7 7 7 7 7 7

Arms

Reward Reward

Bandit

Which arm maximizes the gain?

$
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Bandit recommender systems

 Use bandits to generate recommendations

 Personalized approaches: contextual bandits
– Change their actions depending on the context (user)

– Examples:

• Stochastic versions of collaborative filtering algorithms

• Clusters of users / items (CLUB, COFIBA)

 Relation between bandits and recommenders:

Actions (arms) Candidate items (users)

Rewards

Estimated arm value

Context

Ratings

Metric (e.g. CTR)

Target user
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Our approach: nearest-neighbor bandit

 User-based kNN with stochastic neighborhood selection

 Uses a Thompson sampling bandit to select neighbors

 Arms: users in the system.

 Estimated arm value: conditional preference 𝑝 𝑢 𝑤 =
Γ 𝑢 ∩Γ 𝑤

Γ(𝑤)

 How it works
1. Bandit: Choose the optimal neighbor, 𝑤, for user 𝑢 according to 𝑝(𝑢|𝑤)

2. Neighbor 𝑤 selects candidate user 𝑣 according to rw 𝑣

3. Obtain the reward 𝑟𝑢 𝑣 ∈ {0,1}

4. Update 𝑝(𝑢|ෝ𝑤) for all ෝ𝑤 s.t. 𝑟ෝ𝑤 𝑣 > 0
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Thompson sampling

 Assumption: reward r follows a parametric distribution 𝑝 𝑟 𝜃
– Estimated arm value: 𝔼[𝑟|𝜃]

– Problem: 𝜃 unknown

 Algorithm: from previous data 𝐷
1. Estimate መ𝜃 by sampling from 𝑝 𝜃 𝐷

2. Estimate the arm value as 𝔼[𝑟| መ𝜃]

 Nearest neighbor bandit
– 𝑝 𝑢 𝑣 ∼ Bernoulli 𝑝

– 𝜃 = 𝑝 ∼ Beta 𝛼 𝑢 𝑣 , 𝛽 𝑢 𝑣

𝛼 𝑢 𝑣 = 𝛼0 + #Items both u and v like

𝛽 𝑢 𝑣 = 𝛽0 + #Items v likes, but u does not.
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Extension: 𝒌 neighbors

 Select 𝑘 neighbors instead of one.

 Pick 𝒩𝑘(𝑢): the 𝑘 users maximizing the estimated 𝑝 𝑢 𝑤

 Recommend the candidate user maximizing:

𝑓𝑢 𝑣 = ෍

𝑤∈𝒩𝑘 𝑢

𝑝 𝑢 𝑤 𝑟𝑤 𝑣
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Experiments

 Offline evaluation: simulate feedback from offline data

 Extreme cold start: start with no ratings

 Random user selection (one at a time)

 Metric: cumulative recall
– Fraction of discovered links at time 𝑡

– Growth curve over time

 Algorithms:
– Non-personalized bandits: 𝜀-greedy, Thompson sampling

– Personalized bandits: InterPMF, CLUB

– Exploitation only: user-based kNN, iMF, most popular, random

– Our approach (𝑘 = 1, 𝑘 > 1)
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Conclusions (RG3)

 We have proposed a multi-armed bandit approach for interactive contact 
recommendation

– Based on kNN

– Uses a stochastic Thompson sampling strategy to select neighbors

 It provides relevant recommendations during the recommendation cycle.

 Our approach is more uncertainty-aware than myopic collaborative filtering 
approaches.
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RG1

RG 1 : Algorithmic models
Explore the adaptations of text information retrieval (IR) models

to the contact recommendation task.
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Conclusions (RG1)

 We can use IR models as contact recommendation algorithms.

 IR models are both effective and efficient (BM25)
– Direct recommenders (BM25)

– Neighborhood selectors in kNN

– Samplers and features in learning to rank

 IR-based models are better as neighborhood selectors for kNN

 Learning to rank techniques improve the accuracy of best state of the art 
algorithms.
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RG2

RG 2 : Diversity
Study the effect of contact recommendation on the properties of social 

networks.
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Conclusions (RG2)

 Accuracy is a partial perspective

 We consider evaluation perspectives beyond accuracy
– Global network effects beyond (averaged) isolated user gains.

– New metrics elaborating on weak ties.

 Enhancing the number of weak ties improves novelty & diversity 
of the information arriving to the users
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RG3

RG 3 : Recommendation as a cycle
Understand contact recommendation as a cyclic task, 

and develop interactive approaches to deal with it. 
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Conclusions (RG3)

 We have proposed a multi-armed bandit approach for interactive 
contact recommendation
– Based on kNN

– Uses a stochastic strategy to select neighbors

 It improves medium to long-term accuracy

 Our approach is more uncertainty-aware than myopic collaborative 
filtering approaches.
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Future work

 User studies and online evaluation
– Complement our experiments

– Determine the usefulness of our diversity dimensions

 Explore further relations with IR
– Deep learning IR models

– Other areas: query reformulation, relevance feedback

 Beyond accuracy
– New dimensions: fairness

– Find further benefits: reduce glass ceiling effect, radicalization

 Interactive recommendation
– Explore other experimental settings

– Analyze the evolution of the structural network properties
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Thank you for your attention!

Questions?


