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Online social networks
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Online social networks (II)

¢ Establish new connections

¢ Communication

(@,
¢ Share and receive information
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+ Changes to our society
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Recommender systems

¢ Goal: From past user interactions, suggest items they might be interested in.

Recommended

Based on what's in this playlist

One Winged Angel (From "Final Fantasy VIl A...

| ondon Music Works

The Essential Games Music ...

Shadow of the Colossus®

VAo Earmoe oy
Video Games Live

Opening~Bombing Mission (Final Fantasy VII)

MNobuo Uematsu

Distant Worlds: Music from F...

¢ Multiple domains
— Audiovisual content: Netflix, Spotify
— E-commerce: Amazon, eBay

— Academic publications: Google Scholar, Mendeley
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Recommendation task
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Contact recommendation
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¢ [tems = users

¢ Availability of social relationships

¢ Rating matrix = adjacency matrix
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Contact recommendation examples

BeoeoefMleovw

Foryou COVID-19

rending with Amiibo

Who to follow

@arjen@idf.social
@arjenpdevries

Follow

2 Daniel Valcarce
and 28 others
follow

Show more

e Viral Tweets

« R 0“4l 53% @ 5:04 PM

Trending News Spo

Mark Sanderson
@IR_oldie

Follow

2 Daniel Valcarce
and 36 others
follow

- 30

Friends

People you may know
Ve Victor Guillen

{ L E ‘2 mutual friends

Add Friend

Cris Gomez
2 mutual friends

Add Friend

54% m 4:59 PM

Q

Remove

Remove

Rodri De Blas Garcia
v @16 mutual friends

Add Friend

Tony Go
2 mutual friends

Add Friend

Remove

Remove

© Q - Lorena Gil Monterroso
e 2 mutual friends

.
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Why contact recommendation?

¢ Particular characteristics
— Development of new methods

— Use of social network analysis

¢ Creation of new links
— Main asset of online social networks
— Communication channels
— Source of information

— Increase engagement of users
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Research goals

¢+ RG 1: Algorithmic models

Explore the adaptations of text information retrieval (IR) models to the
contact recommendation task.

g s ¢ RG2 : Diversity

'-g Study the effect of contact recommendation on the properties of social

"g‘ networks.

o =

S ¢+ RG3 : Recommendation cycle

-'q%) Explore contact recommendation as a cyclic task, and develop interactive
z. g approaches to deal with it.
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1. Adaptation of IR models
— Relation between IR and contact recommendation
— Advanced IR models

2. Beyond accuracy
— Structural diversity

— Effects on information diffusion
3. Interactive recommendation

4. Conclusions and future work
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Adaptation of IR models
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Specific methods

Recommender
systems
Contact

recommendation
Machine

Learning

suonjejdepy

Information
Retrieval
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Text information retrieval

0 o um

query

Information
need

) Google

search engine

— documents

search
<

results
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Relation between tasks

Collaborative Contact
IR task filtering recommendation
Neighbor
user

Term

%
& e, S \%,
I % > % %
&P % % 2\«
g

e Relevant Relevant Relevant
....... = Relevant_, g
i link

Query Document Target Candidate Target Candidate
user item user user
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Relation between tasks

Collaborative Contact
IR task filtering recommendation
Neighbor Neighbor
user user
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An example: BM25

Text IR:
(k+ 1) freq(t,d)
=) - RS) (1)
tedng k (1 — b+ Vg |d’|> + freq(t, d)
ID| —|D¢| — 0.5
RS =]
Jw) =log=— 0

Where
¢ d: document » I'(v): candidate user
* @g:query > ['(u): target user
¢+ tedngq:term » t € I'(u) NT'(v): neighbor user
¢ D:set of all documents > U: all users
¢ D;: documents containing t » ['(t): v containing t in I'(v)
+ freq(t,d): frequency oft in d » w(t, v): edge weight
¢ |d|: document d length > len(v) = X eromy wx, v) 16
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An example: BM25

Text IR:
(k+ 1) freq(t,d)
fid= ) e RS)(£)
tedng K (1 — b+ and'|d'|) + freq(t, d)
ID| = |D¢| — 0.5

RSJ(w) = log D.—05
t .

Contact recommendation:

£ (o) = (k + Dw(t, vIRSJ(E)

b - len(v)
avgv,(len(v’))> twitv)

ter(w)nr(v) <1 — b+

U| — |T(¢)] + 0.5

RSJ(6) = o8 T3 0.5
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Experimental setup

¢ Offline evaluation
¢ Data from Twitter and Facebook

* Twitter

— Snowball sampling

— 2 samples
« 1 month: All tweets between 19th June and 19th July 2015
200 tweets: 200 last tweets by each user before 2nd August 2015

— 2 graphs / dataset
« Interaction networks: (u, v) € E if u mentions/retweets v

« Follow networks

¢ Facebook

— From Stanford Large Network Dataset Collection

— Union of 10 ego-networks
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Methodology

* Split:

All Links

Parameter tuning / training Training Validation

Evaluation Input Test judgments

¢ Hyperparameter selection: grid search (nDCG@10)
¢ Evaluate using IR metrics on test: nDCG@10, MAP@10
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Dataset statistics

Twitter 1-month Twitter 200-tweets
Facebook
Interactions Follows Interactions Follows

Users 9,528 9,770 9,985 9,964 4,039

Input edges 170,425 645,022 104,866 427,568 56,466

Test edges 54,335 81,110 21,598 98,519 17,643

Directed / / / / 4

Weighted v/ 4 v/ 4 4

Split type Temporal Temporal Temporal Temporal Random

Density 0.0018 0.0067 0.0013 0.0048 0.0087
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Algorithms

¢ IR models:
— Probability ranking principle: BM25, BIR, ExtremeBM25
— Language models: Query likelihood (QLJM, QLD, QLL)
— Divergence from randomness: PL2, DFRee, DFReeKLIM, DLH, DPH
— Vector space model (VSM)

¢ General collaborative filtering
— User-based / Item-based kNN (cosine similarity)
— Implicit matrix factorization (iMF)

¢ Specific approaches

— Friends of friends: Adamic-Adar, MCN, Jaccard, cosine similarity

— Random walks: Personalized PageRank, Moneys....
— Path-based: Local Path Index, Katz...

¢ Sanity check: Random and most popular

21
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Results (nDCG@ 10)

200-tweets Facebook
Algorithm Interaction Follows
BM25 eI o150 0271 ¢ IR models are effective
BIR 0.1004 0.114 0.572
PL2 0.0983 0.1166 0.5712 - BM25 among top 5
VSM 0.0425 0.0787 0.5237 — Best: 200-tweets interactions
MF 0.1035 0521 — VSM lowest performing IR model
User-based kNN 0.0954 - 0.5457 ¢ Rest of algorithms
Item-based kNN 0.0724 0.1205 0.4542 — Implicit MF is best
Adamic-Adar 0.0997 0.114 0.5746 — Adamic-Adar and MCN are competitive
MCN 0.0948 0.111 0.5585 — Jaccard/cosine are not very competitive
Resource allocation 0.0913 0.1117 - ~ Rest seem very graph dependent
Personalized PageRank 0.063 0.0843
Cosine 0.048 0.0768 0.4943
Popularity 0.0422 0.0397 0.0523
IRG T ohD Thest, Unereidad Auténama de Madrd " -
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Can we do better?

1-month 200-tweets
Algorithm Interaction Follows Interaction Follows Facebook

User-based kNN 0.1367 0.1413 0.0954 0.1297 0.5457
Item-based kNN 0.1174 0.1296 0.0724 0.1205 0.4542
Cosine 0.0393 0.0497 0.0480 0.0768 0.4943

User-based / Item-based
kNN (cosine similarity)

Standalone
cosine similarity

What if we try the same with IR models?
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Results kNN + IR (nDCG@10)

Twitter 200-tweets

Interactions Follows Facebook
0.12 _ o 015 - 0.6 - :
.. ® [ ) 9 .7 ) L34
z v e ‘ 0//0.
z oo Bt o & 5o &
2008 1 °,° %8 0.1 - L 04 1 &
4 ’ @ L
= - =Y
S 004 4 XFY 0.05 1~ * =7 0.2 - o
= ° ’
[ ] [ ]
[ ]
0 | | 0 T 0 | | I
0.03 0.06 0.09 0.12 0.05 0.10 0.15 0.3 04 05 0.6
Standalone algorithm  Standalone algorithm Standalone algorithm
e User-based kNN
o Item-based kNN
—Best baseline
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Can we do even better?

¢ Idea: Learning to rank
— Supervised machine learning models

— Very effective in IR

¢ How does it work?
1. Sample candidates
2. Generate features for each target-candidate user pair

3. Generate recommendation ranking
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Our experiments

¢ Learning to rank algorithm: LambdaMART

¢ Features: Scores of contact recommendation methods
— IR models
— Friends of friends (FOAF) approaches
— User-based / Item-based kNN + IR / FOAF

¢ Sample suitable candidates: use IR models

26
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Learning to rank results

LambdaMART improves best recommendation baselines

Twitter 200-tweets Facebook
0.15 0.65

: | | 0.55 -
0.05 | 0.45

Interactions Follows

nDCG@10
O
S

m LambdaMART
User-based BM25
1MF
Resource allocation
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Conclusions (RQ1)

¢+ We can use IR models as contact recommendation algorithms

¢ Direct IR models are both effective and efficient (BM25)
¢ IR-based models are better as neighborhood selectors for kNN

¢ Learning to rank techniques improve the accuracy of best state of the art algorithms

¢ IR models are effective in three different roles in contact recommendation
— Direct recommenders

— Neighborhood selectors in kNN

— Samplers and features in learning to rank

28
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Beyond accuracy
in contact recommendation
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Accuracy

¢ Fundamental goal of contact recommendation
¢ Increase network density

¢ Limitations:
— Local perspective: average over isolated users

— Narrow perspective: one-dimensional utility
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Beyond accuracy

=
N

¢ Users in the network are not isolated
¢ A few links can cause global effects
¢ Different links — different effects

¢ Contact recommendation
— 500 million new links/month on Twitter (as of 2015)

— Potential to drive network evolution
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1. Define suitable metrics to measure global benefits of recommendation

2. What do the metrics really mean? Do they capture relevant aspects of

network functionality?

32
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Effects on network structure

Algorithm 1 Algorithm 2 Algorithm 3
33
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How to measure?

User | Score

U, 0.9

Uj 0.8

Uy 0.1
. g y Structural
Recommendation metric
ranking
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Potentially relevant structural features of social networks

¢ Structural diversity
— Source of novel information

— Enrichment of the information flow
— Related to the notion of weak tie (Granovetter, 1978)

¢ Strength of a tie

— Measures the involvement of users in the tie
— Strong ties: family, close friends.

— Weak ties: people you meet in conferences, shopkeepers.

¢ In the network structure: non-redundant links

35
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Weak ties: local notions

¢ Consider the direct environment of the link

¢ Triadic closure: minimum unit of structural redundancy

o o
& € oG

a) Non-redundant triad b) Redundant triad

¢ Metric: clustering coetficient complement

Measures the proportion of non-redundant triads in the network

36
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Weak ties: global notions

¢+ Weak ties: links between communities
— Tightly connected groups of nodes

— Few connections outside the group

¢ Modularity complement (MC): number of weak ties

® — 5

37
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Weak ties: global notions (II)

O
ORN®
O

Weak-link redundancy Weak-link diversity

¢ Community edge Gini complement (CEGC)
— New metric
— Distribution of weak links between pairs of communities

— Based on the Gini index

Contact recommendation in social networks: algorithmic models, diversity and network evolution [m@
I R G PhD Thesis, Universidad Autonoma de Madrid

IR Group @UAM Madrid, Spain, 25t May 2021 DE_MADEID



Effect of recommendation algorithms on structural diversity

Algorithm nDCG@10 S::;;lil;:;gt Modularity ComGllillrinity
iIMF 0.902 0.155 0.045
BM25 0.150 0.041
Adamic-Adar 0.098 0.149 0.041
MCN 0.092 0.040
Pers. PageRank 0.100 0.915 0.182 0.054
Popularity 0.057 0.924 0.061
Random

Original network - 0.9437937 0.1463597 0.0390234

What do these numbers really mean
for the network?
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Filter bubbles

We analyze the potential of weak ties on reducing filter bubbles

40
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Diffusion experiment

* Hypothesis

The more structurally diverse the recommendation is,
the more diverse and novel the information flow through
the network will be.

¢ Experiment on interaction networks
1. Start with a baseline: Implicit MF / BM25
2. Apply gradual rerankers for optimizing a metric
3. Extend the network with top k recommended links
4. Run propagation of (real) tweets through the network

5. Measure diffusion properties (novelty & diversity)

41
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Diffusion properties

¢ Measured in terms of tweet hashtags (as topics)

* Novelty

— Proportion of the hashtags unknown to the users.

— Known hashtags: hashtags in their original tweets.

¢ Diversity
— How evenly are hashtags propagated over the population

— Complement of the Gini index
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Z a=1
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nDCG@10
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Graph: Twitter 200-tweets interactions
Baseline: BM25

—@— Community Gini

—O— Modularity
—>¢— Clustering coefficient

Enhancing weak ties has positive effects
in the novelty and diversity of
the information flow




Conclusions (RG2)

¢ Accuracy is a partial perspective

* We propose evaluation perspectives beyond accuracy
— Global network effects beyond (averaged) isolated user gains

— New metrics elaborating on weak ties

¢ Enhancing the number of weak ties improves novelty & diversity
of the information arriving to the users

44
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Interactive recommendation
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¢ Previous parts: single recommendation step

¢ However

— Recommendation does not work in a single step ...
but in an interactive process

— Social networks are dynamic systems, constantly changing

— And so recommender systems are
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Interactive recommendation

¢ More realistic perspective

¢ Cyclic nature of recommendation

Recommendation

Interactions
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Multi-armed bandits

¢ Select the best among several actions (arms)

¢ Exploration vs. exploitation
— Select arm with highest estimated value (exploit)

— Select arm to gain knowledge (explore)

Bandit

F————————— - — - - ===

Reward Reward
\ J
. Vo .
Which arm maximizes the gain?
48
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Bandit recommender systems

¢ Use bandits to generate recommendations

¢ Personalized approaches: contextual bandits
— Change their actions depending on the context (user)
— Examples:

« Stochastic versions of collaborative filtering algorithms
o Clusters of users / items (CLUB, COFIBA)

¢ Relation between bandits and recommenders:

Actions (arms) » Candidate items (users)
Rewards > Ratings
Context > Target user

v

Estimated arm value Metric (e.g. CTR)

Contact recommendation in social networks: algorithmic models, diversity and network evolution [m@
I R G PhD Thesis, Universidad Autonoma de Madrid

IR Group @UAM Madrid, Spain, 25t May 2021 DE_MADEID



Our approach: nearest-neighbor bandit

¢ User-based kNN with stochastic neighborhood selection

¢ Uses a Thompson sampling bandit to select neighbors

¢ Arms: users in the system.

¢ Estimated arm value: conditional preference p(u|w) =

IT(w)nT'(w)|

IT(w)l

¢ How it works

1.
2. Neighbor w selects candidate user v according to r, (v)
3.

4. Update p(u|w) forall w s.t. rp(v) > 0

IRG

IR Group @UAM

Bandit: Choose the optimal neighbor, w, for user u according to p(u|w)

Obtain the reward r, (v) € {0,1}

Contact recommendation in social networks: algorithmic models, diversity and network evolution
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Thompson sampling

¢ Assumption: reward r follows a parametric distribution p(r|8)
— Estimated arm value: E[r|60]
— Problem: & unknown
¢ Algorithm: from previous data D
1. Estimate § by sampling from p(8|D)
2. Estimate the arm value as E[r|6]
¢ Nearest neighbor bandit
- p(u|v) ~ Bernoulli(p)
-0=p~ Beta(a(ulv),ﬁ(ulv))
a(u|lv) = ay + #Items both u and v like
B (ulv) = B, + #Items v likes, but u does not.

51

Contact recommendation in social networks: algorithmic models, diversity and network evolution
I R G PhD Thesis, Universidad Autonoma de Madrid
IRGroup @UAM Madrid, Spain, 25t May 2021




Extension: k neighbors

¢ Select k neighbors instead of one.

¢ Pick IV, (u): the k users maximizing the estimated p(u|w)

¢+ Recommend the candidate user maximizing:

@)= ) plw, @)

WEN (u)

52
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¢ Offline evaluation: simulate feedback from offline data
¢ Extreme cold start: start with no ratings
¢ Random user selection (one at a time)

¢ Metric: cumulative recall
— Fraction of discovered links at time t

— Growth curve over time

¢ Algorithms:
— Non-personalized bandits: e-greedy, Thompson sampling
— Personalized bandits: InterPMF, CLUB
— Exploitation only: user-based kNN, iMF, most popular, random
— Our approach (k =1,k > 1)
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Results (cumulative recall)

Twitter 1-month  Twitter 200-tweets kNN Bandit (k = 1)
1 08 kNN Bandit (k > 1)

0.8 1 'f% 0.6 - /._/ ~CLUB
= 06 - «ICF
3 d4;§§4ﬁ¢£ 044
~ 0.4 7 —+g-greedy
02 - f/)‘/‘/x 0.2 - -+Thompson sampling
012345 6 0123456 ME
Millions Millions ~Popularity
Iteration [teration —+Random
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Conclusions (RG3)

¢+ We have proposed a multi-armed bandit approach for interactive contact
recommendation

— Based on kNN

— Uses a stochastic Thompson sampling strategy to select neighbors

¢ It provides relevant recommendations during the recommendation cycle.

¢ Our approach is more uncertainty-aware than myopic collaborative filtering

approaches.
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RG 1: Algorithmic models

Explore the adaptations of text information retrieval (IR) models

to the contact recommendation task.
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Conclusions (RG1)

¢+ We can use IR models as contact recommendation algorithms.

¢ IR models are both effective and efficient (BM25)
— Direct recommenders (BM25)
— Neighborhood selectors in kNN

— Samplers and features in learning to rank
¢ IR-based models are better as neighborhood selectors for kNN

¢ Learning to rank techniques improve the accuracy of best state of the art
algorithms.
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RG 2 : Diversity

Study the effect of contact recommendation on the properties of social
networks.
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Conclusions (RG2)

¢ Accuracy is a partial perspective

* We consider evaluation perspectives beyond accuracy

— Global network effects beyond (averaged) isolated user gains.

— New metrics elaborating on weak ties.

¢ Enhancing the number of weak ties improves novelty & diversity
of the information arriving to the users
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RG 3 : Recommendation as a cycle

Understand contact recommendation as a cyclic task,
and develop interactive approaches to deal with it.
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Conclusions (RG3)

¢+ We have proposed a multi-armed bandit approach for interactive
contact recommendation

— Based on kNN

— Uses a stochastic strategy to select neighbors

¢ [t improves medium to long-term accuracy

¢ Our approach is more uncertainty-aware than myopic collaborative
filtering approaches.
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¢ User studies and online evaluation
— Complement our experiments
— Determine the usefulness of our diversity dimensions
¢ Explore further relations with IR
— Deep learning IR models
— Other areas: query reformulation, relevance feedback
¢ Beyond accuracy
— New dimensions: fairness
— Find further benefits: reduce glass ceiling effect, radicalization
¢ Interactive recommendation

— Explore other experimental settings

— Analyze the evolution of the structural network properties
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Thank you for your attention!

Questions?




